山东新2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第1页
山东新2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第2页
山东新2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第3页
山东新2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第4页
山东新2021-2022学年高考冲刺押题(最后一卷)数学试卷含解析_第5页
免费预览已结束,剩余13页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交2.已知椭圆:的左、右焦点分别为,,过的直线与轴交于点,线段与交于点.若,则的方程为()A. B. C. D.3.函数在的图象大致为A. B.C. D.4.设则以线段为直径的圆的方程是()A. B.C. D.5.下边程序框图的算法源于我国古代的中国剩余定理.把运算“正整数除以正整数所得的余数是”记为“”,例如.执行该程序框图,则输出的等于()A.16 B.17 C.18 D.196.设复数,则=()A.1 B. C. D.7.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.8.在中,内角所对的边分别为,若依次成等差数列,则()A.依次成等差数列 B.依次成等差数列C.依次成等差数列 D.依次成等差数列9.如图,在矩形中的曲线分别是,的一部分,,,在矩形内随机取一点,若此点取自阴影部分的概率为,取自非阴影部分的概率为,则()A. B. C. D.大小关系不能确定10.已知为定义在上的偶函数,当时,,则()A. B. C. D.11.若复数(是虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知是过抛物线焦点的弦,是原点,则()A.-2 B.-4 C.3 D.-3二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为和;乙笔试、面试通过的概率分别为和.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________.14.如果复数满足,那么______(为虚数单位).15.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.16.已知点是直线上的一点,将直线绕点逆时针方向旋转角,所得直线方程是,若将它继续旋转角,所得直线方程是,则直线的方程是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.18.(12分)在平面直角坐标系中,,,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程.19.(12分)如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.(1)请问小明上学的路线有多少种不同可能?(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?20.(12分)设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.21.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.22.(10分)已知椭圆:(),点是的左顶点,点为上一点,离心率.(1)求椭圆的方程;(2)设过点的直线与的另一个交点为(异于点),是否存在直线,使得以为直径的圆经过点,若存在,求出直线的方程;若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.2.D【解析】

由题可得,所以,又,所以,得,故可得椭圆的方程.【详解】由题可得,所以,又,所以,得,,所以椭圆的方程为.故选:D【点睛】本题主要考查了椭圆的定义,椭圆标准方程的求解.3.A【解析】

因为,所以排除C、D.当从负方向趋近于0时,,可得.故选A.4.A【解析】

计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.5.B【解析】

由已知中的程序框图可知,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,代入四个选项进行验证即可.【详解】解:由程序框图可知,输出的数应为被3除余2,被5除余2的且大于10的最小整数.若输出,则不符合题意,排除;若输出,则,符合题意.故选:B.【点睛】本题考查了程序框图.当循环的次数不多,或有规律时,常采用循环模拟或代入选项验证的方法进行解答.6.A【解析】

根据复数的除法运算,代入化简即可求解.【详解】复数,则故选:A.【点睛】本题考查了复数的除法运算与化简求值,属于基础题.7.A【解析】

由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.8.C【解析】

由等差数列的性质、同角三角函数的关系以及两角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,从而可得结果.【详解】依次成等差数列,,正弦定理得,由余弦定理得,,即依次成等差数列,故选C.【点睛】本题主要考查等差数列的定义、正弦定理、余弦定理,属于难题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.9.B【解析】

先用定积分求得阴影部分一半的面积,再根据几何概型概率公式可求得.【详解】根据题意,阴影部分的面积的一半为:,于是此点取自阴影部分的概率为.又,故.故选B.【点睛】本题考查了几何概型,定积分的计算以及几何意义,属于中档题.10.D【解析】

判断,利用函数的奇偶性代入计算得到答案.【详解】∵,∴.故选:【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.11.A【解析】

将整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把当成进行计算.12.D【解析】

设,,设:,联立方程得到,计算得到答案.【详解】设,,故.易知直线斜率不为,设:,联立方程,得到,故,故.故选:.【点睛】本题考查了抛物线中的向量的数量积,设直线为可以简化运算,是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果.【详解】甲被录取的概率;乙被录取的概率;只有一人被录取的概率.故答案为:.【点睛】本题考查独立事件概率的求解问题,属于基础题.14.【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.15.或【解析】

设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.16.【解析】

求出点坐标,由于直线与直线垂直,得出直线的斜率为,再由点斜式写出直线的方程.【详解】由于直线可看成直线先绕点逆时针方向旋转角,再继续旋转角得到,则直线与直线垂直,即直线的斜率为所以直线的方程为,即故答案为:【点睛】本题主要考查了求直线的方程,涉及了求直线的交点以及直线与直线的位置关系,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)证明见解析;【解析】

(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.18.(1).(2)的方程为.【解析】

(1)令,则,由此能求出点C的轨迹方程.(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。19.(1)6种;(2);(3).【解析】

(1)从4条街中选择2条横街即可;(2)小明途中恰好经过处,共有4条路线,即,,,,分别对4条路线进行分析计算概率;(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.【详解】(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条.(2)小明途中恰好经过处,共有4条路线:①当走时,全程不等红绿灯的概率;②当走时,全程不等红绿灯的概率;③当走时,全程不等红绿灯的概率;④当走时,全程不等红绿灯的概率.所以途中恰好经过处,且全程不等信号灯的概率.(3)设以下第条的路线等信号灯的次数为变量,则①第一条:,则;②第二条:,则;③另外四条路线:;;,则综上,小明上学的最佳路线为;应尽量避开.【点睛】本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.20.(Ⅰ)当时,<0,单调递减;当时,>0,单调递增;(Ⅱ)详见解析;(Ⅲ).【解析】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对求导,再对a进行讨论,判断函数的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论,第(Ⅲ)问,构造函数=(),利用导数判断函数的单调性,从而求解a的值.试题解析:(Ⅰ)<0,在内单调递减.由=0有.当时,<0,单调递减;当时,>0,单调递增.(Ⅱ)令=,则=.当时,>0,所以,从而=>0.(Ⅲ)由(Ⅱ),当时,>0.当,时,=.故当>在区间内恒成立时,必有.当时,>1.由(Ⅰ)有,而,所以此时>在区间内不恒成立.当时,令=().当时,=.因此,在区间单调递增.又因为=0,所以当时,=>0,即>恒成立.综上,.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求,解方程,再通过的正负确定的单调性;要证明不等式,一般证明的最小值大于0,为此要研究函数的单调性.本题中注意由于函数的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.21.(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论