版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008年9月25日晚21时10分04秒,“神舟七号”载人飞船在酒泉卫星发射中心发射升空,实现了太空行走,标志着我国航天事业又上了一个新台阶。生活中的椭圆(一)认识椭圆2.2.1椭圆及其标准方程(一)
(二)动手试验
(1)取一条一定长的细绳
(2)把它的两端用图钉固定在纸板上
(3)当绳长大于两图钉之间的距离时,用铅笔尖把绳子拉直,使笔尖在纸板上慢慢移动,画出一个图形结合实验以及“圆的定义”,思考讨论一下应该如何定义椭圆?反思:F1F2M(三)概念透析F1F2M平面内到两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。这两个定点F1、F2叫做椭圆的焦点两焦点之间的距离叫做焦距。1、椭圆的定义如果设轨迹上任一点M到两定点F1、F2的距离和为常数2a,两定点之间的距离为2c,则椭圆定义还可以用集合语言表示为:P={M||MF1|+|MF2|=2a(2a>2c)}.(1)平面曲线(2)到两定点F1,F2的距离等于定长(3)定长﹥|F1F2|反思:椭圆上的点要满足怎样的几何条件?平面内到两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫椭圆。这两个定点F1、F2叫做椭圆的焦点两焦点之间的距离叫做焦距。绳长=绳长<
注:定长所成曲线是椭圆定长所成曲线是线段定长无法构成图形OXYF1F2M2.椭圆方程的建立步骤一:建立直角坐标系,步骤二:设动点坐标步骤三:列方程步骤四:化简方程(约束条件)求曲线方程的步骤:解:取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立平面直角坐标系(如图).
设M(x,y)是椭圆上任意一点,椭圆的焦距2c(c>0),M与F1和F2的距离的和等于正常数2a(2a>2c)
,则F1、F2的坐标分别是(c,0)、(c,0).(想一想:下面怎样化简?)由椭圆的定义,代入坐标OxyMF1F2(四)方程推导则方程可化为观察左图,你能从中找出表示
c、a的线段吗?即a2-c2有什么几何意义?()焦点在y轴:焦点在x轴:2、椭圆的标准方程:1oFyx2FM12yoFFMx
F1(-c,0)、F2(c,0)
F1(0,-c)、F2(0,c)
注意理解以下几点:①在椭圆的两种标准方程中,都有的要求;
②在椭圆的两种标准方程中,由于,所以可以根据分母的大小来判定焦点在哪一个坐标轴上;③椭圆的三个参数之间的关系是,其中大小不确定.分母哪个大,焦点就在哪个坐标轴上,反之亦然。注意:(五)尝试应用1、下列方程哪些表示的是椭圆,如果是,判断它的焦点在哪个坐标轴上?变式一:将上题焦点改为(0,-4)、(0,4),结果如何?变式二:将上题改为两个焦点的距离为8,椭圆上一点P到两焦点的距离和等于10,结果如何? 已知两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和等于10;(五)尝试应用2、写出适合下列条件的椭圆的标准方程当焦点在X轴时,方程为:当焦点在Y轴时,方程为:例1、写出适合下列条件的椭圆的标准方程两个焦点的坐标是(0,-2)和(0,2),并且经过点P解:因为椭圆的焦点在y轴上,设它的标准方程为∵
c=2,且
c2=a2
-b2
∴4=a2-
b2……①又∵椭圆经过点P∴
……②联立①②可求得:∴椭圆的标准方程为
(法一)xyF1F2P(六)典例分析(法二)
因为椭圆的焦点在y轴上,所以设它的标准方程为由椭圆的定义知,所以所求椭圆的标准方程为求椭圆的标准方程的步骤:(1)首先要判断焦点位置,设出标准方程(先定位)(2)根据椭圆定义或待定系数法求a,b
(后定量)分母哪个大,焦点就在哪个轴上标准方程相同点焦点位置的判断不同点图形焦点坐标探究定义a、b、c的关系xyF1F2MOxyF1F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省凤庆县第二中学2025届高二物理第一学期期末质量检测模拟试题含解析
- 2025届江苏省重点中学物理高一上期末监测试题含解析
- 2025届广东省实验中学物理高二上期中预测试题含解析
- 2025届上海市青浦一中物理高二第一学期期末学业质量监测模拟试题含解析
- 2024年工程施工合同承包(2篇)
- 2024年货物出口合同经典版(3篇)
- 2024年电脑设备采购合同样本(2篇)
- 2024年物流运输合同参考样本(二篇)
- 茶花女读后感
- 经典伤感语录摘录63条
- 2024年公路标识安装合同
- (北师大版)2024-2025学年九年级数学上学期期中测试卷
- 01-专题一 信息类文本阅读
- 山东省济宁市-八年级(上)期中数学试卷-(含答案)
- 中小学-珍爱生命 远离毒品-课件
- 金融学期末试卷及答案
- 道法珍惜师生情谊教学课件 2024-2025学年统编版道德与法治七年级上册
- 奇妙的透镜说课课件-2024-2025学年沪粤版物理八年级上学期
- 2024至2030年中国消防行业市场发展规模及投资机会分析报告
- 商铺出售回购协议书范本
- 港口液体危化品装卸管理人员理论考试题库-上(单选题)
评论
0/150
提交评论