版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.将一元二次方程化成一般式后,二次项系数和一次项系数分别为()A.4,3 B.4,7 C.4,-3 D.2.下列事件中,是必然事件的是()A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B.抛掷一枚普通正方体骰子,所得点数小于7C.抛掷一枚一元硬币,正面朝上D.从一副没有大小王的扑克牌中抽出一张,恰好是方块3.如图,在4×4的网格中,点A,B,C,D,H均在网格的格点上,下面结论:①点H是△ABD的内心②点H是△ABD的外心③点H是△BCD的外心④点H是△ADC的外心其中正确的有()A.1个 B.2个 C.3个 D.4个4.如图,在△ABC中,点D,E,F分别是边AB,AC,BC上的点,DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶55.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2 B.3a2 C.4a2 D.5a26.如图,中,,,,则的长为()A. B. C.5 D.7.如图,一斜坡AB的长为m,坡度为1:1.5,则该斜坡的铅直高度BC的高为()A.3m B.4m C.6m D.16m8.不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()A. B. C. D.9.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.70° B.65° C.55° D.35°10.将抛物线向左平移3个单位长度,再向上平移5个单位长度,得到的抛物线的表达式为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,由边长为1的小正方形组成的网格中,点为格点(即小正方形的顶点),与相交于点,则的长为_________.12.如图,在矩形ABCD中,AB=2,BC=4,点E、F分别在BC、CD上,若AE=,∠EAF=45°,则AF的长为_____.13.如图,是的直径,点在上,且,垂足为,,,则__________.14.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是_____.15.如图,已知矩形ABCD的顶点A、D分别落在x轴、y轴,OD=2OA=6,AD:AB=3:1.则点B的坐标是_____.16.如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_______________________.17.如图,AC是⊙O的直径,B,D是⊙O上的点,若⊙O的半径为3,∠ADB=30°,则的长为____.18.双十一期间,荣昌重百推出有奖销售促销活动,消费达到800元以上得一次抽奖机会,李老师消费1000元后来到抽奖台,台上放着一个不透明抽奖箱,里面放有规格完全相同的四个小球,球上分别标有1,2,3,4四个数字,主持人让李老师连续不放回抽两次,每次抽取一个小球,如果两个球上的数字均为奇数则可中奖,则李老师中奖的概率是__________.三、解答题(共66分)19.(10分)如图,在等边△ABC中,把△ABC沿直线MN翻折,点A落在线段BC上的D点位置(D不与B、C重合),设∠AMN=α.(1)用含α的代数式表示∠MDB和∠NDC,并确定的α取值范围;(2)若α=45°,求BD:DC的值;(3)求证:AM•CN=AN•BD.20.(6分)问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.21.(6分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.22.(8分)已知为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.23.(8分)如图,射线表示一艘轮船的航行路线,从到的走向为南偏东30°,在的南偏东60°方向上有一点,处到处的距离为200海里.(1)求点到航线的距离.(2)在航线上有一点.且,若轮船沿的速度为50海里/时,求轮船从处到处所用时间为多少小时.(参考数据:)24.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲乙(1)写出表格中的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1___________7940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.26.(10分)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【详解】解:化成一元二次方程一般形式是4x2-1x+7=0,则它的二次项系数是4,一次项系数是-1.
故选:C.【点睛】本题主要考查了一元二次方程的一般形式,关键把握要确定一次项系数,首先要把方程化成一般形式.2、B【解析】根据事件发生的可能性大小即可判断.【详解】A.从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B.抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C.抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D.从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.3、C【分析】先利用勾股定理计算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,则CB⊥AB,CD⊥AD,根据角平分线定理的逆定理可判断点C不在∠BAD的角平分线上,则根据三角形内心的定义可对①进行判断;由于HA=HB=HC=HD=,则根据三角形外心的定义可对②③④进行判断.【详解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都为直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴点C不在∠BAD的角平分线上,∴点H不是△ABD的内心,所以①错误;∵HA=HB=HC=HD=,∴点H是△ABD的外心,点H是△BCD的外心,点H是△ADC的外心,所以②③④正确.故选:C.【点睛】本题考查了三角形的内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心和勾股定理.4、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故选A.点睛:若,则,.5、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质.图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:.故选A.6、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.【点睛】本题考查解直角三角形.7、B【分析】首先根据题意作出图形,然后根据坡度=1:1.5,可得到BC和AC之间的倍数关系式,设BC=x,则AC=1.5x,再由勾股定理求得AB=,从而求得BC的值.【详解】解:∵斜坡AB的坡度i=BC:AC=1:1.5,AB=,
∴设BC=x,则AC=1.5x,∴由勾股定理得AB=,又∵AB=,∴=,解得:x=4,∴BC=4m.故选:B.【点睛】本题考查坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解题关键.8、A【解析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.9、A【解析】根据旋转的性质和等腰三角形的性质即可得到结论.【详解】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵将△ABC绕点C逆时针旋转α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故选:A.【点睛】本题考查旋转的性质以及等腰三角形的性质.注意掌握旋转前后图形的对应关系是解此题的关键.10、A【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【详解】原抛物线的顶点为(0,0),向左平移3个单位,再向上平移1个单位,那么新抛物线的顶点为(−3,1);可设新抛物线的解析式为y=−4(x−h)2+k,代入得:y=−4(x+3)2+1.故选:A.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.二、填空题(每小题3分,共24分)11、【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案为:【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.12、【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案为.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,13、2【分析】先连接OC,在Rt△ODC中,根据勾股定理得出OC的长,即可求得答案.【详解】连接OC,如图,
∵CD=4,OD=3,,
在Rt△ODC中,
∴,∵,∴.故答案为:.【点睛】此题考查了圆的认识,根据题意作出辅助线,构造出直角三角形是解答此题的关键.14、(0,3)【分析】要求抛物线与y轴的交点,即令x=0,解方程即可.【详解】解:令x=0,则y=3,即抛物线y=2x2-5x+3与y轴的交点坐标是(0,3).故答案为(0,3).【点睛】本题考查了抛物线与y轴的交点.求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与y轴的交点坐标,令x=0,即可求得交点纵坐标.15、(5,1)【分析】过B作BE⊥x轴于E,根据矩形的性质得到∠DAB=90°,根据余角的性质得到∠ADO=∠BAE,根据相似三角形的性质得到AE=OD=2,DE=OA=1,于是得到结论.【详解】解:过B作BE⊥x轴于E,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=OD=2,BE=OA=1,∴OE=3+2=5,∴B(5,1)故答案为:(5,1)【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线并证明△OAD∽△EBA是解题的关键.16、【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.【详解】解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四边形PAOB的面积=3--=1故答案为:1.【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.17、2π.【分析】根据圆周角定理求出∠AOB,得到∠BOC的度数,根据弧长公式计算即可.【详解】解:由圆周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的长=,故答案为:2π.【点睛】本题考查的是圆周角定理、弧长的计算,掌握圆周角定理、弧长公式是解题的关键.18、【分析】画树状图展示所有12种等可能的结果数,找出两个球上的数字均为奇数的结果数,然后根据概率公式求解.【详解】画树状图为:共有12种等可能的结果数,其中两个球上的数字均为奇数的结果数为2,所以李老师中奖的概率=.故答案为:.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.三、解答题(共66分)19、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)见解析【分析】(1)利用翻折不变性,三角形内角和定理求解即可解决问题.(2)设BM=x.解直角三角形用x表示BD,CD即可解决问题.(3)证明△BDM∽△CND,推出=,推出DM•CN=DN•BD可得结论.【详解】(1)由翻折的性质可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)设BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD•cos30°=x,∴MA=MD=x,∴BC=AB=x+x,∴CD=BC﹣BD=x﹣x,∴BD:CD=2x:(x﹣x)=+1.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴=,∴DM•CN=DN•BD,∵DM=AM,ND=AN,∴AM•CN=AN•BD.【点睛】本题考查了翻折变换、解直角三角形以及相似三角形的判定与性质,熟练掌握折叠的性质是解题的关键.20、(1)当时,移动顺序为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.【详解】解:(1)当时,把上面3个金属片作为一个整体,移动的顺序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).故答案为:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)解:设是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,f(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即n=3时,小盘→3柱,中盘→2柱,小盘从3柱→2柱,大盘从1柱→3柱,小盘从2柱→1柱,中盘从2柱→3柱,小盘从1柱→3柱,完成.[用种方法把中、小两盘移到2柱,大盘3柱;再用种方法把中、小两盘从2柱3柱,完成],故答案为:(3)由(2)知:故答案为:(4)故答案为:【点睛】本题考查了归纳推理、图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.21、(1)证明见试题解析;(2)1;(3).【解析】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD=x,CD,BD,BO用x表示出来,所以可得BD长.(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD长.试题解析:(1)证明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB.(2)∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在Rt△ABC中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶1,设BD=x,则DO=DC=x,BO=x,∵CD+BD=8,∴x+x=8,解得x=,1,即:BD=1.(3)∵点B与点B′关于直线DO对称,∴∠B=∠OB′D,BO=B′O=x,BD=B′D=x,∵∠B为锐角,∴∠OB′D也为锐角,∴∠AB′D为钝角,∴当△AB′D是等腰三角形时,AB′=DB′,∵AB′+B′O+BO=10,∴x+x+x=10,解得x=,即BD=,∴当△AB′D为等腰三角形时,BD=.点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知平分,过点作,,则.②截两边:如图(2),已知平分,点上,在上截取,则≌.③角平分线+平行线→等腰三角形:如图(3),已知平分,,则;如图(4),已知平分,,则.(1)(2)(3)(4)④三线合一(利用角平分线+垂线→等腰三角形):如图(1),已知平分,且,则,.(1)22、(1)(3﹣m,0);(2);(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A的坐标;(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,运用相似比求出FC,EC长的表达式,而AC=m,代入即可.【详解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴点A的坐标为(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3)又抛物线的顶点为P(1,0),且过B、D两点,所以可设抛物线的解析式为:得:∴抛物线的解析式为:(3)证明:过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,则∵QM∥CE∴△PQM∽△PEC则∵QN∥FC∴△BQN∽△BFC则又∵AC=m=4∴即为定值8【点睛】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.23、(1)100海里(2)约为1.956小时【分析】(1)过A作AH⊥MN于H.由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH中,得出AH=AM,问题得解;
(2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB是等腰直角三角形,求出BH=AH距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过作于.∵,∴在直角中,∵,,海里,∴海里.答:点到航线的距离为100海里.(2)在直角中,,由(1)可知,∵∴,∴,∴轮船从处到处所用时间约为小时.答:轮船从处到处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.24、(1),,,;(2)选择乙,理由见解析【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【详解】解:(1)甲的平均成绩(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:=×(16+9+1+0+3+4+9)==;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.25、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;
(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据小区60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字营销利用大数据提升品牌影响力考核试卷
- 宠物移民和出国旅行的手续和注意事项考核试卷
- 塑料制品在电子电器中的应用考核试卷
- 贵重物品押运员招聘协议
- 假山防护网安装施工合同
- 体育馆压桩施工协议
- 科技园区配套档口租赁合同
- 城市排水CFG桩施工合同
- 押金合同范本解析与应用
- 桥梁养护堡坎施工合同协议
- XXX-工厂制造业绩效考核方案(内含岗位职责及KPI指标)
- 2024高考语文复习 文言文阅读 《史记》 专题练习( 解析)
- 2024年广西玉柴机器集团有限公司招聘笔试参考题库含答案解析
- 人类社会面临的物种灭绝与生物多样性保护
- 工程检测检验
- 旅行社服务采购
- 公证服务开展法律知识讲座
- 班组消防管理制度
- 消化科护士的危重病人护理技术
- 做好新形势下社会稳定工作的思考
- 《撰写研究报告》课件
评论
0/150
提交评论