2023届岳阳市数学九年级第一学期期末调研模拟试题含解析_第1页
2023届岳阳市数学九年级第一学期期末调研模拟试题含解析_第2页
2023届岳阳市数学九年级第一学期期末调研模拟试题含解析_第3页
2023届岳阳市数学九年级第一学期期末调研模拟试题含解析_第4页
2023届岳阳市数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个2.如图,在矩形ABCD中,DE⊥AC垂足为F,交BC于点E,BE=2EC,连接AE.则tan∠CAE的值为()A. B. C. D.3.下列光线所形成的投影不是中心投影的是()A.太阳光线 B.台灯的光线 C.手电筒的光线 D.路灯的光线4.若关于的方程的一个根是,则的值是()A. B. C. D.5.2019的相反数是()A. B.﹣ C.|2019| D.﹣20196.如图,在平面直角坐标系中,一次函数y=-4x+4的图像与x轴,y轴分别交于A,B两点,正方形ABCD的顶点C,D在第一象限,顶点D在反比例函数的图像上,若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图像上,则n的值是()A.2 B.3 C.4 D.57.如图,将绕点按逆时针方向旋转后得到,若,则的度数是()A. B. C. D.8.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a< B.≤a<C.a≤或a> D.a≤﹣1或a≥9.如图,在等腰中,于点,则的值()A. B. C. D.10.已知一组数据共有个数,前面个数的平均数是,后面个数的平均数是,则这个数的平均数是()A. B. C. D.11.下列图形中是中心对称图形的共有()A.1个 B.2个 C.3个 D.4个12.下列说法正确的是()A.了解飞行员视力的达标率应使用抽样调查B.一组数据3,6,6,7,8,9的中位数是6C.从2000名学生中选出200名学生进行抽样调查,样本容量为2000D.一组数据1,2,3,4,5的方差是2二、填空题(每题4分,共24分)13.如图,ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,则图中阴影部分的面积为______.14.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+5=_____.15.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.16.某公园平面图上有一条长12cm的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.17.如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为____cm.18.如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为.三、解答题(共78分)19.(8分)如图,中,,将绕点顺时针旋转得到,使得点的对应点落在边上(点不与点重合),连接.(1)依题意补全图形;(2)求证:四边形是平行四边形.20.(8分)解一元二次方程:x2+4x﹣5=1.21.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.22.(10分)如图,已知A(-1,0),一次函数的图像交坐标轴于点B、C,二次函数的图像经过点A、C、B.点Q是二次函数图像上一动点。(1)当时,求点Q的坐标;(2)过点Q作直线//BC,当直线与二次函数的图像有且只有一个公共点时,求出此时直线对应的一次函数的表达式并求出此时直线与直线BC之间的距离。23.(10分)商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件,设每件商品降价元(为正整数).据此规律,请回答:(1)商场日销轡量增加件,每件商品盈利元(用含的代数式表示);(2)每件商品降价多少元时,商场日盈利可达到元;(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.24.(10分)计算:—.25.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.26.如图以的一边为直径作⊙,⊙与边的交点恰好为的中点,过点作⊙的切线交边于点.(1)求证:;(2)若,求的值.

参考答案一、选择题(每题4分,共48分)1、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【点睛】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.2、C【分析】证明△AFD∽△CFE,得出,由△CFE∽△DFC,得出,设EF=x,则DE=3x,再由三角函数定义即可得出答案.【详解】解:设EC=x,∵BE=2EC=2x,∴BC=BE+CE=3x,∵四边形ABCD是矩形,

∴AD=BC=3x,AD∥EC,

∴△AFD∽△CFE,

∴,,设CF=n,设EF=m,

∴DF=3EF=3m,AF=3CF=3n,∵△ECD是直角三角形,,

∴△CFE∽△DFC,

∴,∴,即,

∴,∵,∴tan∠CAE=,

故选:C.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,三角函数等知识;熟练掌握矩形的性质,证明三角形相似是解题的关键.3、A【分析】利用中心投影(光由一点向外散射形成的投影叫做中心投影)和平行投影(由平行光线形成的投影是平行投影)的定义即可判断出.【详解】解:A.太阳距离地球很远,我们认为是平行光线,因此不是中心投影.

B.台灯的光线是由台灯光源发出的光线,是中心投影;

C.手电筒的光线是由手电筒光源发出的光线,是中心投影;

D.路灯的光线是由路灯光源发出的光线,是中心投影.

所以,只有A不是中心投影.

故选:A.【点睛】本题考查了中心投影和平行投影的定义.熟记定义,并理解一般情况下,太阳光线可以近似的看成平行光线是解决此题的关键.4、A【分析】把代入方程,即可求出的值.【详解】解:∵方程的一个根是,∴,∴,故选:A.【点睛】本题考查了一元二次方程的解,以及解一元一次方程,解题的关键是熟练掌握解方程的步骤.5、D【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】2019的相反数是﹣2019,故选D.【点睛】此题考查相反数,掌握相反数的定义是解题关键6、B【分析】由一次函数的关系式可以求出与x轴和y轴的交点坐标,即求出OA,OB的长,由正方形的性质,三角形全等可以求出DE、AE、CF、BF的长,进而求出G点的坐标,最后求出CG的长就是n的值.【详解】如图过点D、C分别做DE⊥x轴,CF⊥y轴,垂足分别为E,F.CF交反比例函数的图像于点G.把x=0和y=0分别代入y=-4x+4得y=4和x=1∴A(1,0),B(0,4)∴OA=1,OB=4由ABCD是正方形,易证△AOB≌△DEA≌△BCF(AAS)∴DE=BF=OA=1,AE=CF=OB=4∴D(5,1),F(0,5)把D点坐标代入反比例函数y=,得k=5把y=5代入y=,得x=1,即FG=1CG=CF-FG=4-1=3,即n=3故答案为B.【点睛】本题考查了反比例函数的图像上的坐标特征,正方形的性质,以及全等三角形判断和性质,根据坐标求出线段长是解决问题的关键.7、A【分析】根据绕点按逆时针方向旋转后得到,可得,然后根据可以求出的度数.【详解】∵绕点按逆时针方向旋转后得到∴又∵∴【点睛】本题考查的是对于旋转角的理解,能利用定义从图形中准确的找出旋转角是关键.8、A【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax1-x+1.观察图象可知当a<0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a>0时,x=1时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=-x+,由,消去y得到,3ax1-1x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤-1或≤a<,故选A.【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.9、D【分析】先由,易得,由可得,进而用勾股定理分别将BD、BC长用AB表示出来,再根据即可求解.【详解】解:∵,,∴,∴,又∵,∴,在中,,∴,故选:D【点睛】本题主要考查了解三角形,涉及了等腰三角形性质和勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10、C【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..11、B【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,进行判断.【详解】从左起第2、4个图形是中心对称图形,故选B.【点睛】本题考查了中心对称图形的概念,注意掌握图形绕某一点旋转180°后能够与自身重合.12、D【分析】根据调查方式对A进行判断;根据中位数的定义对B进行判断;根据样本容量的定义对C进行判断;通过方差公式计算可对D进行判断.【详解】A.了解飞行员视力的达标率应使用全面调查,所以A选项错误;B.数据3,6,6,7,8,9的中位数为6.5,所以B选项错误;C.从2000名学生中选出200名学生进行抽样调查,样本容量为200,所以C选项错误;D.一组数据1,2,3,4,5的方差是2,所以D选项正确故选D.【点睛】本题考查了方差,方差公式是:,也考查了统计的有关概念.二、填空题(每题4分,共24分)13、【分析】根据题意,作出合适的辅助线,由图可知,阴影部分的面积=△CBF的面积,根据题目的条件和图形,可以求得△BCF的面积,从而可以解答本题.【详解】连接OD、OF、BF,作DE⊥OA于点E,∵ABCD是平行四边形,AB是⊙O的直径,点D在⊙O上,AD=OA=2,∴OA=OD=AD=OF=OB=2,DC∥AB,∴△DOA是等边三角形,∠AOD=∠FDO,∴∠AOD=∠FDO=60°,同理可得,∠FOB=60°,△BCD是等边三角形,∵弓形DF的面积=弓形FB的面积,DE=OD•sin60°=,∴图中阴影部分的面积为:=,故答案为:.【点睛】本题考查了求阴影部分面积的问题,掌握三角形面积公式是解题的关键.14、1【分析】利用抛物线与x轴的交点问题得到m2﹣m﹣1=0,则m2﹣m=1,然后利用整体代入的方法计算m2﹣m+5的值.【详解】∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,即m2﹣m=1,∴m2﹣m+5=1+5=1.故答案为:1.【点睛】本题考查了抛物线与x轴的交点:把求二次函数(是常数,)与轴的交点坐标问题转化为解关于的一元二次方程.15、1.【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A1=A1A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),然后计算自变量为1010对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x1=3,则A1(3,0),∵将C1点A1旋转180°得C1,交x轴于点A1;将C1绕点A1旋转180°得C3,交x轴于点A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案为1.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.16、240m【分析】根据比例尺=图上距离∶实际距离可得实际距离,再进行单位换算.【详解】设这条公路的实际长度为xcm,则:1:2000=12:x,解得x=24000,24000cm=240m.故答案为240m.【点睛】本题考查图上距离实际距离与比例尺的关系,解题的关键是掌握比例尺=图上距离∶实际距离.17、1.1【分析】证明△OCD∽△OAB,然后利用相似比计算出CD即可.【详解】解:OB=5m,OD=3m,AB=1cm,∵CD∥AB,∴△OCD∽△OAB,∴,即,∴CD=1.1,即对应位置的E的高CD为1.1cm.故答案为1.1.【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长.18、34【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是12即某一个电子元件不正常工作的概率为12则两个元件同时不正常工作的概率为14故在一定时间段内AB之间电流能够正常通过的概率为1-14=3故答案为:34三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)根据旋转的性质作图;(2)由旋转的性质可得,然后根据全等三角形的性质得出,,从而使问题得证.【详解】解:(1)如图:(2)证明:∵绕点顺时针旋转得到,∴,,.∵,∴.∵,∴.∵,∴,∵,∴,∴,∴,又∵,∴四边形是平行四边形.【点睛】本题考查旋转的性质,全等的判定和性质,平行四边形的判定,比较基础,掌握判定定理及其性质正确推理论证是本题的解题关键.20、x2=﹣5,x2=2.【分析】利用因式分解法解方程.【详解】(x+5)(x﹣2)=2,x+5=2或x﹣2=2,所以x2=﹣5,x2=2.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.21、(1)答案见解析(2)54%(3)【解析】(1)根据各组频数之和等于总数可得分的人数,据此即可补全直方图;(2)用成绩大于或等于80分的人数除以总人数可得;(3)列出所有等可能结果,再根据概率公式求解可得.【详解】(1)70到80分的人数为人,补全频数分布直方图如下:(2)本次测试的优秀率是;(3)设小明和小强分别为、,另外两名学生为:、,则所有的可能性为:、、、、、,所以小明与小强同时被选中的概率为.【点睛】本题考查了频数分布表、频数分布直方图,解题的关键是明确题意,找出所求问题需要的条件,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了列表法和画树状图求概率.22、(1)Q(0,2)或(3,2)或Q(,-2)或Q(,-2);(2)一次函数,此时直线与直线BC之间的距离为【分析】(1)根据可求得Q点的纵坐标,将Q点的纵坐标代入求得的二次函数解析式中求出Q点的横坐标,即可求得Q点的坐标;(2)根据两直线平行可得直线l的一次项系数,因为直线与抛物线只有一个交点,所以联立它们所形成的方程组有两个相同的解可求得直线l的常数项,即可得到它的解析式.利用等面积法可求得原点距离两直线的距离,距离差即为直线与直线BC之间的距离.【详解】解:(1)对于一次函数,当x=0时,y=2,所以C(0,2),当y=0时,x=4,所以B(4,0).∴.∴则,将A、B带入二次函数解析式得,解得,∴二次函数解析式为:,当y=2时,,解得,所以,当y=-2时,,解得,所以,故Q(0,2)或(3,2)或Q(,-2)或Q(,-2).(2)根据题意设一次函数,∵直线与二次函数的图像有且只有一个公共点∴只有一个解,整理得,∴,解得b=4,∴一次函数如下图,直线l与坐标轴分别相交于D,E,过O作直线BC的垂线与BC和DE相交于F和G,对于一次函数,当x=0时,y=4,故D(0,4),当y=0时,x=8,故E(8,0).∴,,即,解得,,即,解得,∴.∴此时直线与直线BC之间的距离为.【点睛】本题考查一次函数与二次函数的综合应用.(1)中能利用求得Q点的纵坐标是解决此问的关键;(2)中需理解①两个一次函数平行k值相等;②一次函数与二次函数交点的个数取决于联立它们所形成的一元二次方程的解得个数;③掌握等面积法在实际问题中的应用.23、(1)2x;(50-x);(2)每件商品降价1元,商场可日盈利2400元;(3)商场日盈利的最大值为2450元.【分析】(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数40+2×降价的钱数),列出方程求解即可;(3)求出(2)中函数表达式的顶点坐标的横坐标即可解决问题.【详解】(1)商场日销售量增加2x件,每件商品盈利(50−x)元

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论