版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知线段MN=4cm,P是线段MN的黄金分割点,MP>NP,那么线段MP的长度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm2.如图一段抛物线y=x2﹣3x(0≤x≤3),记为C1,它与x轴于点O和A1:将C1绕旋转180°得到C2,交x轴于A2;将C2绕旋转180°得到C3,交x轴于A3,如此进行下去,若点P(2020,m)在某段抛物线上,则m的值为()A.0 B.﹣ C.2 D.﹣23.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.104.要使方程是关于x的一元二次方程,则()A.a≠0 B.a≠3C.a≠3且b≠-1 D.a≠3且b≠-1且c≠05.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<06.方程的根是()A. B. C., D.,7.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35° B.70° C.110° D.120°8.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65° B.130° C.50° D.100°9.把抛物线的图象绕着其顶点旋转,所得抛物线函数关系式是()A. B. C. D.10.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.二、填空题(每小题3分,共24分)11.如果二次根式有意义,那么的取值范围是_________.12.要使式子在实数范围内有意义,则实数x的取值范围是________.13.在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同。搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是____.14.已知点P1(a,3)与P2(-4,b)关于原点对称,则ab=_____.15.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.16.若抛物线与轴的交点为与,则抛物线的对称轴为直线___________.17.把方程2x2﹣1=x(x+3)化成一般形式是_________.18.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是______米.三、解答题(共66分)19.(10分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.20.(6分)如图,在Rt△ABC中,∠C=90°,=,BC=2,求AB的长.21.(6分)A,B,C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由接球者将球随机地传给其余两人中的某人。请画树状图,求两次传球后,球在A手中的概率.22.(8分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.(1)若该方程有一根为2,求a的值及方程的另一根;(2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.23.(8分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.24.(8分)中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.25.(10分)已知是二次函数,且函数图象有最高点.(1)求的值;(2)当为何值时,随的增大而减少.26.(10分)已知,如图1,在中,,,,若为的中点,交与点.(1)求的长.(2)如图2,点为射线上一动点,连接,线段绕点顺时针旋转交直线与点.①若时,求的长:②如图3,连接交直线与点,当为等腰三角形时,求的长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】根据黄金分割的定义进行作答.【详解】由黄金分割的定义知,,又MN=4,所以,MP=22.所以答案选B.【点睛】本题考查了黄金分割的定义,熟练掌握黄金分割的定义是本题解题关键.2、C【分析】先求出点A1的坐标,再根据旋转的性质求出点A1的坐标,然后根据图象上点的纵坐标循环规律即可求出m的值.【详解】当y=0时,x1﹣3x=0,解得:x1=0,x1=3,∴点A1的坐标为(3,0).由旋转的性质,可知:点A1的坐标为(6,0).∵1010÷6=336……4,∴当x=4时,y=m.由图象可知:当x=1时的y值与当x=4时的y值互为相反数,∴m=﹣(1×1﹣3×1)=1.故选:C.【点睛】此题考查的是探索规律题和求抛物线上点的坐标,找出图象上点的纵坐标循环规律是解决此题的关键.3、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.4、B【分析】根据一元二次方程的定义选出正确选项.【详解】解:∵一元二次方程二次项系数不能为零,∴,即.故选:B.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.5、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.6、D【分析】先移项然后通过因式分解法解一元二次方程即可.【详解】或故选:D.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.7、C【分析】根据圆内接四边形的性质即可求出∠C.【详解】∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠A=110°,故选:C.【点睛】此题考查的是圆的内接四边形,掌握圆内接四边形的性质:对角互补,是解决此题的关键.8、C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.9、B【分析】根据图象绕顶点旋转180°,可得函数图象开口方向相反,顶点坐标相同,可得答案.【详解】∵,
∴该抛物线的顶点坐标是(1,3),
∴在旋转之后的抛物线解析式为:.
故选:B.【点睛】本题考查了二次函数图象的平移和旋转,解决本题的关键是理解绕抛物线的顶点旋转180°得到新函数的二次项的系数符号改变,顶点不变.10、B【分析】画树状图得出所有等可能结果,从找找到符合条件得结果数,在根据概率公式计算可得.【详解】画树状图如下:由树状图知共有16种等可能结果,其中第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的有6种结果,所以第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率为.故选B.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(每小题3分,共24分)11、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:二次根式有意义,则1-x≥0,
解得:x≤1.
故答案为:x≤1.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12、.【分析】根据二次根式被开方数大于等于0,对于分式,分母不能为0,列式计算即可得解.【详解】既是二次根式,又是分式的分母,∴解得:∴实数的取值范围是:故答案为:【点睛】本题主要考查了二次根式及分式有意义的条件,正确把握相关定义是解题关键.13、.【分析】用列表法或画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【详解】解:画树状图如下:
∵一共有6种情况,两个球都是白球有2种,
∴P(两个球都是白球),
故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、﹣1【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)可得到a,b的值,再代入ab中可得到答案.【详解】解:∵P(a,3)与P′(-4,b)关于原点的对称,
∴a=4,b=-3,
∴ab=4×(-3)=-1,
故答案为:-1.【点睛】此题主要考查了坐标系中的点关于原点对称的坐标特点.注意:关于原点对称的点,横纵坐标分别互为相反数.15、(-3,4)【详解】在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是(-3,4).故答案为(-3,4).【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反.16、3【分析】函数的图象与轴的交点的横坐标就是方程的根,再根据两根之和公式与对称轴公式即可求解.【详解】根据两根之和公式可得,即则抛物线的对称轴:故填:3.【点睛】本题考查二次函数与一元二次方程的关系和两根之和公式与对称轴公式,熟练掌握公式是关键.17、x2﹣3x﹣1=1【解析】2x2﹣1=x(x+3),2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=1,故x2﹣3x﹣1=1,故答案为x2﹣3x﹣1=1.18、1.【详解】解:∵BE⊥AC,CD⊥AC,∴△ABE∽△ACD,解得:故答案为1.点睛:同一时刻,物体的高度与影长的比相等.三、解答题(共66分)19、,【分析】把点A(3,k-2)代入,即可得出=k−2,据此求出k的值,再根据正比例函数y的值随x的值增大而减小,得出满足条件的k值即可求解.【详解】根据题意可得
=k−2,
整理得k2-2k+3=0,
解得k1=-1,k2=3,
∵正比例函数y的值随x的值增大而减小,
∴k=-1,
∴点A的坐标为(3,-3),
∴反比例函数是解析式为:y=−;
正比例函数的解析式为:y=-x.【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于将函数图象的交点与方程(组)的解结合起来是解此类题目常用的方法.20、AB=【分析】通过解直角三角形先求出AC的值,之后通过勾股定理进一步求解即可.【详解】∵在Rt△ABC中,∠C=90°,∴==.,∵BC=2,∴=,即AC=6.,又∵=,∴=40,∴AB=.【点睛】本题主要考查了解直角三角形与勾股定理的运用,熟练掌握相关概念是解题关键.21、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在A手中的情况,再利用概率公式即可求得答案【详解】解:列树状图一共有4种结果,两次传球后,球在A手中的有2种情况,∴P(两次传球后,球在A手中的).【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22、(3)a=,方程的另一根为;(2)答案见解析.【解析】(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.23、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.24、(1);(2)【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为.故答案为;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部ABCDABACADABABCBDBCACBCDCDADBDCD由表中可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=.故答案为:.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纵横软件课程设计总结
- 打印报表课程设计
- 吉林省四平市第三高级中学2024-2025学年高一上学期第二次质量检测历史试题
- 甜品糖水教学课程设计
- 茶艺插画课程设计案例
- 物理有没有进展课程设计
- 2024年演员聘用合同
- 电子商务行业客服工作回顾
- 外科部门手术治疗工作年度总结
- 2024年社区工作者测试题库
- 公交车站台服务规范与安全意识
- 2024电商消费趋势年度报告-flywheel飞未-202412
- 慢阻肺护理个案病例范文
- 《农机安全》课件
- 公共厕所清洁保养协议
- 浙江省温州市2023-2024学年六年级上学期期末科学试卷(含答案)3
- 深圳大学《激光原理与技术》2023-2024学年第一学期期末试卷
- 西安市高新第一中学八年级上册地理期末试卷(含答案)
- 2024年广东省深圳市中考英语适应性试卷
- 普法学法知识考试题库(100题附答案)
- 中国普通食物营养成分表(修正版)
评论
0/150
提交评论