《余弦和正切》设计_第1页
《余弦和正切》设计_第2页
《余弦和正切》设计_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《余弦和正切》教学设计一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点EOEOABCD·难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.(1)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.则sin∠BAC=;sin∠ADC=.(2)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D。已知AC=EQ\R(,5),BC=2,那么sin∠ACD=()A. B. C. D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A`B`C`,∠C=∠C`=90o,∠B=∠B`=α,那么有什么关系?分析:由于∠C=∠C`=90o,∠B=∠B`=α,所以Rt△ABC∽Rt△,,即结论:在直角三角形中,当锐角B的度数一定时,不管三角形的大小如何,∠B的邻边与斜边的比也是一个固定值。如图,在Rt△ABC中,∠C=90o,把锐角B的邻边与斜边的比叫做∠B的余弦,记作cosB即,把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即,锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.(三)教学互动例2:如图,在中,,BC=6,求cos和tan的值.解:∵,∴又例3:(1)如图(1),在中,,,,求的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求.(四)巩固再现1.在中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,则有()A.B.C.D.2.在中,∠C=90°,如果那么的值为()A.B.C.D.3.如图:P是∠的边OA上一点,且P点的坐标为(3,4),则c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论