2023届陕西省西安市庆安初级中学数学九年级第一学期期末质量检测试题含解析_第1页
2023届陕西省西安市庆安初级中学数学九年级第一学期期末质量检测试题含解析_第2页
2023届陕西省西安市庆安初级中学数学九年级第一学期期末质量检测试题含解析_第3页
2023届陕西省西安市庆安初级中学数学九年级第一学期期末质量检测试题含解析_第4页
2023届陕西省西安市庆安初级中学数学九年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列四个图形分别是四届国际数学家大会的会标,其中不属于中心对称图形的是()A. B. C. D.2.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF=CE=则关于的函数图象大致是()A. B. C. D.3.下列方程中是关于x的一元二次方程的是()A.x2+=0 B.y2﹣3x+2=0C.x2=5x D.x2﹣4=(x+1)24.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.5.计算=()A. B. C. D.6.抛物线的部分图象如图所示,当时,x的取值范围是()A.x>2或x<-3 B.-3<x<2C.x>2或x<-4 D.-4<x<27.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:18.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是()A.2个 B.3个 C.4个 D.5个9.设计一个摸球游戏,先在一个不透明的盒子中放入个白球,如果希望从中任意摸出个球是白球的概率为,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)()A. B. C. D.10.一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A.60° B.90° C.120° D.180°11.下列二次函数中,顶点坐标为(-5,0),且开口方向、形状与y=-x2的图象相同的是()A.y=(x-5)2 B.y=x2-5 C.y=-(x+5)2 D.y=(x+5)212.如图,、是的两条弦,若,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.14.在平面直角坐标系中,反比例函数的图象经过点,,则的值是__________.15.计算:=_____________16.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.17.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是矩形.18.如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是__.三、解答题(共78分)19.(8分)用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?20.(8分)如图,反比例函数的图象过点A(2,3).(1)求反比例函数的解析式;(2)过A点作AC⊥x轴,垂足为C.若P是反比例函数图象上的一点,求当△PAC的面积等于6时,点P的坐标.21.(8分)已知二次函数y=a−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),22.(10分)如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点是轴上一动点,连接,过点作的垂线与轴交于点.(1)求该抛物线的函数关系表达式;(2)当点在线段(点不与重合)上运动至何处时,线段的长有最大值?并求出这个最大值;(3)在第四象限的抛物线上任取一点,连接.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.23.(10分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)24.(10分)如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.25.(12分)(2016山东省聊城市)如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1.(1)求反比例函数的表达式;(2)将直线向上平移后与反比例函数在第二象限内交于点C,如果△ABC的面积为48,求平移后的直线的函数表达式.26.如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,某人在点A处测得∠CAQ=30°,再沿AQ方向前进20米到达点B,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据≈1.414,≈1.732)

参考答案一、选择题(每题4分,共48分)1、A【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选A.【点睛】此题主要考查了中心对称图形的定义,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、C【分析】由题意得∠B=∠C=45°,∠G=∠EAF=45°,推出△ACE∽△ABF,得到∠AEC=∠BAF,根据相似三角形的性质得到

,于是得到结论.【详解】解:如图:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y,∴,即xy=2,(1<x<2).故选:C.【点睛】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ABF∽△ACE是解题的关键.3、C【解析】依据一元二次方程的定义解答即可.【详解】A.x20是分式方程,故错误;B.y2﹣3x+2=0是二元二次方程,故错误;C.x2=5x是一元二次方程,故正确;D.x2﹣4=(x+1)2是一元一次方程,故错误.故选:C.【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解答本题的关键.4、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.5、C【解析】分析:分子根据合并同类项计算,分母根据同底数幂的乘法计算.详解:原式=.故选C.点睛:本题考查了合并同类项和同底数幂的乘法计算,合并同类项的方法是系数相加,字母和字母的指数不变;同底数的幂相乘,底数不变,把指数相加.6、C【分析】先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y<0时,x的取值范围.【详解】解:因为抛物线过点(2,0),对称轴是x=-1,

根据抛物线的对称性可知,抛物线必过另一点(-1,0),

因为抛物线开口向下,y<0时,图象在x轴的下方,

此时,x>2或x<-1.

故选:C.【点睛】本题考查了抛物线与x轴的交点,解题的关键是利用二次函数的对称性,判断图象与x轴的交点,根据开口方向,形数结合,得出结论.7、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.8、D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,再根据与x轴的交点坐标代入分析即可得到结果;【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ab<0,故①②正确;当x=-1时,,故③正确;当x=1时,根据图象可得,故④正确;根据函数图像与x轴有两个交点可得,故⑤正确;故答案选D.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.9、A【分析】利用概率公式,根据白球个数和摸出个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出个球是白球的概率为,∴盒子中球的总数=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.10、B【解析】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的4倍,∴4πr2=πrR.∴R=4r.∴底面周长=πR.∵圆锥的底面周长等于它的侧面展开图的弧长,∴设圆心角为n°,有,∴n=1.故选B.11、C【分析】根据二次函数的顶点式:y=a(x-m)2+k,即可得到答案.【详解】顶点坐标为(-5,0),且开口方向、形状与y=-x2的图象相同的二次函数解析式为:y=-(x+5)2,故选:C.【点睛】本题主要考查二次函数的顶点式,掌握二次函数的顶点式y=a(x-m)2+k,其中(m,k)是顶点坐标,是解题的关键.12、C【分析】根据同弧所对的圆周角是圆心角的一半即可求出结论.【详解】解:∵∴∠BOC=2∠A=60°故选C.【点睛】此题考查的是圆周角定理,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.二、填空题(每题4分,共24分)13、或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.14、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【详解】(1)将代入得,k==-6,所以,反比例函数解析式为,将点的坐标代入得所以m=,故填:.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.15、-1【分析】根据二次根式的性质和负整数指数幂的运算法则进行计算即可.【详解】故答案为:-1.【点睛】此题主要考查了二次根式的性质以及负整数指数幂的运算法则,熟练掌握其性质和运算法则是解此题的关键.16、1【分析】根据题意求出△ABC的周长,根据相似三角形的性质列式计算即可.【详解】解:设△DEF的周长别为x,△ABC的三边长分别为4、5、6,∴△ABC的周长=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案为1.【点睛】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键.17、AB⊥CD【解析】解:需添加条件AB⊥DC,∵、、、分别为四边形中、、、中点,∴,∴,.∴四边形为平行四边形.∵E、H是AD、AC中点,

∴EH∥CD,

∵AB⊥DC,EF∥HG

∴EF⊥EH,

∴四边形EFGH是矩形.

故答案为:AB⊥DC.18、(47,)【分析】根据菱形的边长求得A1、A2、A3…的坐标然后分别表示出C1、C2、C3…的坐标找出规律进而求得C6的坐标.【详解】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的纵坐标为:sim60°.OC1=,横坐标为cos60°.OC1=,∴C1,∵四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…∴C2的纵坐标为:sin60°A1C2=,代入y求得横坐标为2,∴C2(2,),∴C3的纵坐标为:sin60°A2C3=,代入y求得横坐标为5,∴C3(5,),∴C4(11,),C5(23,),∴C6(47,);故答案为(47,).【点睛】本题是对点的坐标变化规律的考查,主要利用了菱形的性质,解直角三角形,根据已知点的变化规律求出菱形的边长,得出系列C点的坐标,找出规律是解题的关键.三、解答题(共78分)19、美国第一夫人比法国第一夫人小16岁.【分析】将法国新总统设为x岁,然后用含x的代数式分别表示出法国第一夫人,美国新总统,美国第一夫人,然后用法国第一夫人减去美国第一夫人的年龄即可得出答案.【详解】设法国新总统x岁,则法国第一夫人:(x+24)岁,美国新总统:(x+32)岁,美国第一夫人:(x+32﹣24)=(x+8)岁,故美国第一夫人比法国第一夫人小:(x+24)﹣(x+8)=16(岁).故美国第一夫人比法国第一夫人小16岁.【点睛】本题主要考查代数式的应用,掌握列代数式的方法是解题的关键.20、(1)y=;(2)(1,1),(﹣2,﹣3).【分析】(1)把点A的坐标代入反比例函数解析式,列出关于系数m的方程,通过解方程来求m的值;(2)设点P的坐标是(a,),然后根据三角形的面积公式来求点P的坐标.【详解】解:(1)设反比例函数为y=,∵反比例函数的图象过点A(2,3).则=3,解得m=1.故该反比例函数的解析式为y=;(2)设点P的坐标是(a,).∵A(2,3),∴AC=3,OC=2.∵△PAC的面积等于1,∴×AC×|a﹣2|=1,解得:|a﹣2|=4,∴a1=1,a2=﹣2,∴点P的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键21、(1),;(2)当x<或x>5时,函数值大于1.【分析】(1)把(-1,1)和点(2,-9)代入y=ax2-4x+c,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数的图象过点(−1,1)和点(2,−9),∴,解得:,∴;∴对称轴为:;(2)令,解得:,,如图:∴点A的坐标为(,1),点B的坐标为(5,1);∴结合图象得到,当x<或x>5时,函数值大于1.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.22、(1);(2)时,线段有最大值.最大值是;(3)时,的面积有最大值,最大值是,此时点的坐标为.【分析】(1)将点的坐标代入二次函数表达式,即可求解;(2)设,则,由得出比例线段,可表示的长,利用二次函数的性质可求出线段的最大值;(3)过点作轴交于点,由即可求解.【详解】解:(1))∵抛物线经过,,把两点坐标代入上式,,解得:,故抛物线函数关系表达式为;(2)∵,点,∴,∵正方形中,,∴,,∴,又∵,∴,∴,设,则,∴,∴,∵,∴时,线段长有最大值,最大值为.即时,线段有最大值.最大值是.(3)存在.如图,过点作轴交于点,∵抛物线的解析式为,∴,∴点坐标为,设直线的解析式为,∴,∴,∴直线的解析式为,设,则,∴,∴,∵,∴时,的面积有最大值,最大值是,此时点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质,会利用相似比表示线段之间的关系.利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度是解题的关键.23、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:123451﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2(2,1)﹣﹣﹣(2,3)(2,4)(2,5)3(3,1)(3,2)﹣﹣﹣(3,4)(3,5)4(4,1)(4,2)(4,3)﹣﹣﹣(4,5)5(5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5个满足条件的P点,尺规作图见解析【分析】(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,则CM+BM=C'M+BM=BC最小;求出BC'的直线解析式为y=x+1,即可求M点;(3)根据等腰三角形腰的情况分类讨论,然后分别尺规作图即可.【详解】解:(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,根据两点之间线段最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论