![2023届陕西省西安市高新第二初级中学九年级数学第一学期期末检测模拟试题含解析_第1页](http://file4.renrendoc.com/view/eec5cfbdf44204bcda75fdfc671c0eb8/eec5cfbdf44204bcda75fdfc671c0eb81.gif)
![2023届陕西省西安市高新第二初级中学九年级数学第一学期期末检测模拟试题含解析_第2页](http://file4.renrendoc.com/view/eec5cfbdf44204bcda75fdfc671c0eb8/eec5cfbdf44204bcda75fdfc671c0eb82.gif)
![2023届陕西省西安市高新第二初级中学九年级数学第一学期期末检测模拟试题含解析_第3页](http://file4.renrendoc.com/view/eec5cfbdf44204bcda75fdfc671c0eb8/eec5cfbdf44204bcda75fdfc671c0eb83.gif)
![2023届陕西省西安市高新第二初级中学九年级数学第一学期期末检测模拟试题含解析_第4页](http://file4.renrendoc.com/view/eec5cfbdf44204bcda75fdfc671c0eb8/eec5cfbdf44204bcda75fdfc671c0eb84.gif)
![2023届陕西省西安市高新第二初级中学九年级数学第一学期期末检测模拟试题含解析_第5页](http://file4.renrendoc.com/view/eec5cfbdf44204bcda75fdfc671c0eb8/eec5cfbdf44204bcda75fdfc671c0eb85.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知二次函数yax22ax3a23(其中x是自变量),当x2时,y随x的增大而增大,且3x0时,y的最大值为9,则a的值为().A.1或 B.或 C. D.12.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.若点A(-3,m),B(3,m),C(-1,m+n²+1)在同一个函数图象上,这个函数可能是()A.y=x+2 B. C.y=x²+2 D.y=-x²-24.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.5.如图,直线与双曲线交于、两点,则当时,x的取值范围是A.或B.或C.或D.6.若关于x的一元二次方程(a+1)x2+x+a2-1=0的一个解是x=0,则a的值为()A.1 B.-1 C.±1 D.07.已知反比例函数的图象经过点(1,2),则k的值为()A.0.5 B.1 C.2 D.48.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1400件.若设这个百分数为,则可列方程()A. B.C. D.9.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合10.两个相似多边形一组对应边分别为3cm,4.5cm,那么它们的相似比为()A. B. C. D.二、填空题(每小题3分,共24分)11.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.12.一组数据3,2,1,4,的极差为5,则为______.13.在相同时刻,物高与影长成正比.在某一晴天的某一时刻,某同学测得他自己的影长是2.4m,学校旗杆的影长为13.5m,已知该同学的身高是1.6m,则学校旗杆的高度是_____.14.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.15.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是_____.16.在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,若AE=2,△ADE的面积为4,四边形BCED的面积为5,则边AB的长为________.17.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)18.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为__________.三、解答题(共66分)19.(10分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)测试日期11月5日11月20日12月5日12月20日1月3日甲9697100103104乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.(1)乙同学这5次数学练习成绩的平均数为分,方差为分;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.20.(6分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)21.(6分)2019年11月20日,“美丽玉环,文旦飘香”号冠名列车正式发车,为广大旅客带去“中国文旦之乡”的独特味道.根据市场调查,在文旦上市销售的30天中,其销售价格(元公斤)与第天之间满足函数(其中为正整数);销售量(公斤)与第天之间的函数关系如图所示,如果文旦上市期间每天的其他费用为100元.(1)求销售量与第天之间的函数关系式;(2)求在文旦上市销售的30天中,每天的销售利润与第天之间的函数关系式;(日销售利润=日销售额-日维护费)(3)求日销售利润的最大值及相应的的值.22.(8分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t>0),△BPQ的面积为S(cm2).(1)t=2秒时,则点P到AB的距离是cm,S=cm2;(2)t为何值时,PQ⊥AB;(3)t为何值时,△BPQ是以BP为底边的等腰三角形;(4)求S与t之间的函数关系式,并求S的最大值.23.(8分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)24.(8分)已知的半径为,点到直线的距离为,且直线与相切,若,分别是方程的两个根,求的值.25.(10分)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:(1)求y与x之间的函数关系式;(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?26.(10分)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由3x0时时,y的最大值为9,可得x=-3时,y=9,即可求出a.【详解】∵二次函数yax22ax3a23(其中x是自变量),∴对称轴是直线,∵当x⩾2时,y随x的增大而增大,∴a>0,∵3x0时,y的最大值为9,又∵a>0,对称轴是直线,,∴在x=-3时,y的最大值为9,∴x=-3时,,∴,∴a=1,或a=−2(不合题意舍去).故选D.【点睛】此题考查二次函数的性质,解题关键在于掌握二次函数的基本性质即可解答.2、B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点:1.轴对称图形;2.中心对称图形.3、D【分析】先根据点A、B的坐标可知函数图象关于y轴对称,排除A、B选项;再根据点C的纵坐标大于点A的纵坐标,结合C、D选项,根据y随x的增减变化即可判断.【详解】函数图象关于y轴对称,因此A、B选项错误又再看C选项,的图象性质:当时,y随x的增大而减小,因此错误D选项,的图象性质:当时,y随x的增大而增大,正确故选:D.【点睛】本题考查了二次函数图象的性质,掌握图象的性质是解题关键.4、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.5、C【解析】试题解析:根据图象可得当时,x的取值范围是:x<−6或0<x<2.故选C.6、A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a的方程,从而求得a的值,且(a+1)x2+x+a2-1=0为一元二次方程,即.【详解】把x=0代入方程得到:a2-1=0解得:a=±1.(a+1)x2+x+a2-1=0为一元二次方程即.综上所述a=1.故选A.【点睛】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.7、C【解析】将(1,1)代入解析式中即可.【详解】解:将点(1,1)代入解析式得,,k=1.故选:C.【点睛】此题考查的是求反比例系数解析式,掌握用待定系数法求反比例函数解析式是解决此题的关键.8、B【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x.【详解】解:已设这个百分数为x.200+200(1+x)+200(1+x)2=1.故选B.【点睛】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程.9、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选B.考点:中心对称.10、A【解析】由题意得,两个相似多边形的一组对应边的比为3:4.5=,∴它们的相似比为,故选A.二、填空题(每小题3分,共24分)11、1.【分析】设的半径为,在中,,则有,解方程即可.【详解】设的半径为.在中,,则有,解得,∴的直径为1寸,故答案为1.【点睛】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.13、9米【分析】由题意根据物高与影长成比例即旗杆的高度:13.5=1.6:2.4,进行分析即可得出学校旗杆的高度.【详解】解:∵物高与影长成比例,∴旗杆的高度:13.5=1.6:2.4,∴旗杆的高度==9米.故答案为:9米.【点睛】本题考查相似三角形的应用,解题的关键是理解题意,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程并通过解方程求出旗杆的高度.14、3.1【分析】连接BP,如图,先解方程=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【详解】连接BP,如图,当y=0时,=0,解得x1=4,x2=−4,则A(−4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=∴BP′=1+2=7,∴线段OQ的最大值是3.1,故答案为:3.1.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.15、【解析】从数﹣2,﹣,1,4中任取1个数记为m,再从余下,3个数中,任取一个数记为n.根据题意画图如下:共有12种情况,由题意可知正比例函数y=kx的图象经过第三、第一象限,即可得到k=mn>1.由树状图可知符合mn>1的情况共有2种,因此正比例函数y=kx的图象经过第三、第一象限的概率是.故答案为.16、1【分析】由∠AED=∠B,∠A是公共角,根据有两角对应相等的两个三角形相似,即可证得△ADE∽△ACB,又由相似三角形面积的比等于相似比的平方,可得,然后由AE=2,△ADE的面积为4,四边形BCDE的面积为5,即可求得AB的长.【详解】∵∠AED=∠B,∠A是公共角,∴△ADE∽△ACB,∴,∵△ADE的面积为4,四边形BCED的面积为5,∴△ABC的面积为9,∵AE=2,∴,解得:AB=1.故答案为1.【点睛】本题考查相似三角形的判定性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,
则≈0.618,
解得:x≈1,且符合题意.
故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.18、1【分析】袋中黑球的个数为,利用概率公式得到,然后利用比例性质求出即可.【详解】解:设袋中黑球的个数为,根据题意得,解得,即袋中黑球的个数为个.故答案为:1.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题(共66分)19、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【详解】解:(1)乙=乙=故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【点睛】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.20、(1),;(2)C(-3,0),S=6;(3)或【分析】(1)根据题意把A的坐标代入反比例函数的图像与一次函数,分别求出k和b,从而即可确定反比例函数和一次函数的解析式;(2)由题意先求出C的坐标,再利用三角形面积公式求出ΔAOC的面积;(3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x的取值范围.【详解】解:(1)将点A(1,4)代入反比例函数的图像与一次函数,求得以及,所以反比例函数和一次函数的解析式分别为:和;(2)因为C在一次函数的图象上以及x轴上,所以求得C坐标为(-3,0),则有OC=3,ΔAOC以OC为底的高为4,所以ΔAOC的面积为:;(3)由可知一次函数的值大于反比例函数的值,把B(m,-2)代入,得出m=-2,即B(-2,-2),此时当或时,一次函数的值大于反比例函数的值.【点睛】本题考查一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小,解题的关键是确定交点的坐标.21、(1);(2);(3)101.2,1.【分析】分两段,根据题意,用待定系数法求解即可;先用含m,n的式子表示出y来,再代入即可;分别对(2)中的函数化为顶点式,再依次求出各种情况下的最大值,最后值最大的即为所求.【详解】(1)当时,设,由图知可知,解得∴同理得,当时,∴销售量与第天之间的函数关系式:(2)∵∴整理得,(3)当时,∵的对称轴∴此时,在对称轴的右侧随的增大而增大∴时,取最大值,则当时∵的对称轴是∴在时,取得最大值,此时当时∵的对称轴为∴此时,在对称轴的左侧随的增大而减小∴时,取最大值,的最大值是综上,文旦销售第1天时,日销售利润最大,最大值是101.2【点睛】本题考查了一次函数和二次函数的实际应用,注意分情况进行讨论.22、(1),;(2);(3);(4)S=﹣t2+3t,S的最大值为.【分析】(1)作PH⊥AB于H,根据勾股定理求出AB,证明△BHP∽△BCA,根据相似三角形的性质列出比例式,求出PH,根据三角形的面积公式求出S;(2)根据△BQP∽△BCA,得到=,代入计算求出t即可;(3)过Q作QG⊥BC于G,证明△QBG∽△ABC,根据相似三角形的性质列式计算,得到答案;(4)根据△QBG∽△ABC,用t表示出QG,根据三角形的面积公式列出二次函数关系式,根据二次函数的性质计算即可.【详解】解:在Rt△ABC中,AC=6cm,BC=8cm,由勾股定理得,AB===10cm,∴0<t≤5,经过ts时,BP=t,AQ=2t,则BQ=10﹣2t,(1)如图1,作PH⊥AB于H,当t=2时,BP=2,BQ=10﹣2t=6,∵∠BHP=∠BCA=90°,∠B=∠B,∴△BHP∽△BCA,∴=,即=,解得:PH=,∴S=×6×=,故答案为:;;(2)当PQ⊥AB时,∠BQP=∠BCA=90°,∠B=∠B,∴△BQP∽△BCA,∴=,即=,解得,t=,则当t=时,PQ⊥AB;(3)如图2,过Q作QG⊥BC于G,∵QB=QP,QG⊥BC,∴BG=GP=t,∵∠BGQ=∠C=90°,∠B=∠B,∴△QBG∽△ABC,∴=,即=,解得,t=,∴当t=时,△BPQ是以BP为底边的等腰三角形;(4)由(3)可知,△QBG∽△ABC,∴=,即=,解得,QG=﹣t+6,∴S=×t×(﹣t+6),=﹣t2+3t,=﹣(t﹣)2+,则当t=时,S的值最大,最大值为.【点睛】本题考查的是相似三角形的判定和性质、二次函数的应用以及三角形的面积计算,掌握相似三角形的判定定理和性质定理、二次函数的性质是解题的关键.23、教学楼DF的高度为.【分析】延长AB交CF于E,先证明四边形AMFE是矩形,求出EF=AM=3,再设DE=x米,利用Rt△BCE得到AE=x+12,再根据Rt△ADE得到,即可得到x的值,由此根据DF=DE+EF求出结果.【详解】如图,延长AB交CF于E,由题意知:∠DAE=30,∠CBE=45,AB=9米,四边形ABNM是矩形,∵四边形ABNM是矩形,∴AB∥MN,∵CF⊥MN,∴∠AEC=∠MFC=90,∵∠AMF=∠MFC=∠AEF=90,∴四边形AMFE是矩形,∴EF=AM=3,设DE=x米,在Rt△BCE中,∠CBE=45,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt△ADE中,∠DAE=30,∴,∴,解得:,∴DF=DE+EF=(米).【点睛】此题考查利用三角函数解决实际问题,解题中注意线段之间的关系,设未知数很主要,通常是设所求的量,利用图中所给的直角三角形,表示出两条边的长度,根据度数即可列得三角函数关系式,由此解决问题.24、【分析】根据直线与圆相切的条件得,再根据一元二次方程根的判别式列出方程即得.【详解】∵由题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度城市轨道交通工程勘察合同
- 2025年度建筑行业安全培训与职业健康防护劳动合同
- 2025年度市政工程混凝土泵送专业承包合同规范文本
- 2025年度国际环保技术研发合作合同
- 2025年度建筑工程质量保修合同补充协议
- 2025年度建筑清包工节能改造合同范本
- 2025年度公路货物运输责任险合同范本
- 2025年度建筑电气设备安装与维修合同
- 2025年度小微企业贷款合同法律意见书
- 2025年度建筑行业招投标与合同管理信息化解决方案合同
- 2024山西文旅投资集团招聘117人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 小学校本课程教材《趣味数学》
- 干细胞疗法推广方案
- (2024年)电工安全培训(新编)课件
- mil-std-1916抽样标准(中文版)
- 《社区康复》课件-第七章 脑瘫患儿的社区康复实践
- 城乡环卫一体化内部管理制度
- 广汇煤炭清洁炼化有限责任公司1000万吨年煤炭分级提质综合利用项目变更环境影响报告书
- 小学数学六年级解方程练习300题及答案
- 大数据在化工行业中的应用与创新
- 光伏十林业可行性报告
评论
0/150
提交评论