2023届山西省忻州市数学九年级第一学期期末预测试题含解析_第1页
2023届山西省忻州市数学九年级第一学期期末预测试题含解析_第2页
2023届山西省忻州市数学九年级第一学期期末预测试题含解析_第3页
2023届山西省忻州市数学九年级第一学期期末预测试题含解析_第4页
2023届山西省忻州市数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.反比例函数y=图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣32.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B. C. D.3.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25° B.50° C.65° D.75°4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A. B. C. D.5.如图所示的是太原市某公园“水上滑梯”的侧面图,其中段可看成是双曲线的一部分,其中,矩形中有一个向上攀爬的梯子,米,入口,且米,出口点距水面的距离为米,则点之间的水平距离的长度为()A.米 B.米 C.米 D.米6.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为()A. B. C. D.7.如图,点B、D、C是⊙O上的点,∠BDC=130°,则∠BOC是()A.100° B.110° C.120° D.130°8.已知一次函数与反比例函数的图象有2个公共点,则的取值范围是()A. B. C.或 D.9.如图,正五边形ABCD内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是()A.①③④ B.①②③ C.①②④ D.①②③④10.如图,的半径为3,是的弦,直径,,则的长为()A. B. C. D.11.如图,是岑溪市几个地方的大致位置的示意图,如果用表示孔庙的位置,用表示东山公园的位置,那么体育场的位置可表示为()A. B. C. D.12.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.二、填空题(每题4分,共24分)13.写出一个对称轴是直线,且经过原点的抛物线的表达式______.14.已知,则的值为_______.15.已知,则___________.16.若是方程的一个根,则代数式的值等于______.17.如图,AB为⊙O的直径,C,D是⊙O上两点,若∠ABC=50°,则∠D的度数为______.18.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.三、解答题(共78分)19.(8分)如图,在Rt△ABE中,∠B=90°,以AB为直径的⊙O交AE于点C,CE的垂直平分线FD交BE于点D,连接CD.(1)判断CD与⊙O的位置关系,并证明;(2)若AC=6,CE=8,求⊙O的半径.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE.(1)求证:∠B=∠D;(2)若AB=4,BC-AC=2,求CE的长.21.(8分)如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.22.(10分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.(1)求证:;(2)记,,求关于的函数表达式;(3)若,求图中阴影部分的面积.23.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.24.(10分)化简求值:,其中a=2cos30°+tan45°.25.(12分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=,cos53°=,tan53°=)26.在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.2、A【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【详解】若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选A.【点睛】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.3、C【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.【详解】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选C.【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.4、C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,两个骰子的点数相同的有6种情况,

∴两个骰子的点数相同的概率为:故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比5、D【分析】根据题意B、C所在的双曲线为反比例函数,B点的坐标已知为B(2,5),代入即可求出反比例函数的解析式:y=,C(x,1)代入y=中,求出C点横坐标为10,可以得出DE=OD-OE即可求出答案.【详解】解:设B、C所在的反比例函数为y=B(xB,yB)∴xB=OE=AB=2yB=EB=OA=5代入反比例函数式中5=得到k=10∴y=∵C(xC,yC)yC=CD=1代入y=中∴1=xC=10∴DE=OD-OE=xC-xB=10-2=8故选D【点睛】此题主要考查了反比例函数的定义,根据已知参数求出反比例函数解析式是解题的关键.6、C【分析】根据函数关系式,求出t=1时的h的值即可.【详解】t=1s时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.7、A【分析】首先在优弧上取点E,连接BE,CE,由点B、D、C是⊙O上的点,∠BDC=130°,即可求得∠E的度数,然后由圆周角定理,即可求得答案.【详解】解:在优弧上取点E,连接BE,CE,如图所示:

∵∠BDC=130°,

∴∠E=180°-∠BDC=50°,

∴∠BOC=2∠E=100°.

故选A.【点睛】此题考查了圆周角定理以及圆的内接四边形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8、C【分析】将两个解析式联立整理成关于x的一元二次方程,根据判别式与根的关系进行解题即可.【详解】将代入到中,得,整理得∵一次函数与反比例函数的图象有2个公共点∴方程有两个不相等的实数根所以解得或故选C.【点睛】本题考查的是一次函数与反比例函数图像交点问题,能用函数的思想思考问题是解题的关键.9、B【分析】根据圆的正多边形性质及圆周角与弦的关系解题即可.【详解】解:①∴BC∥AD,故本选项正确;②∵BC=CD=DE,∴∠BAC=∠CAD=∠DAE,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,BA=AE,BC=DE,∠B=∠E,∴△BAC≌△EAD(SAS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为①②③.【点睛】此题考查圆的正多边形性质及圆周角与弦的关系,理解定义是关键.10、C【分析】连接OC,利用垂径定理以及圆心角与圆周角的关系求出;再利用弧长公式即可求出的长.【详解】解:连接OC(同弧所对的圆心角是圆周角的2倍)∵直径∴=(垂径定理)∴故选C【点睛】本题考查了垂径定理、圆心角与圆周角以及利用弧长公式求弧长,熟练掌握相关定理和公式是解答本题的关键.11、A【分析】根据孔庙和东山公园的位置,可知坐标轴的原点、单位长度、坐标轴的正方向,据此建立平面直角坐标系,从而可得体育场的位置.【详解】由题意可建立如下图所示的平面直角坐标系:平面直角坐标系中,原点O表示孔庙的位置,点A表示东山公园的位置,点B表示体育场的位置则点B的坐标为故选:A.【点睛】本题考查了已知点在平面直角坐标系中的位置求其坐标,依据题意正确建立平面直角坐标系是解题关键.12、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.二、填空题(每题4分,共24分)13、答案不唯一(如)【分析】抛物线的对称轴即为顶点横坐标的值,根据顶点式写出对称轴是直线的抛物线表达式,再化为一般式,再由经过原点即为常数项c为0,即可得到答案.【详解】解:∵对称轴是直线的抛物线可为:又∵抛物线经过原点,即C=0,∴对称轴是直线,且经过原点的抛物线的表达式可以为:,故本题答案为:(答案不唯一).【点睛】本题考查了抛物线的对称轴与抛物线解析式的关系.关键是明确对称轴的值与顶点横坐标相同.14、【分析】令连等式的值为k,将a、b、c全部转化为用k表示的形式,进而得出比值.【详解】令则a=6k,b=5k,c=4k则故答案为:.【点睛】本题考查连比式的应用,是一类比较常见的题型,需掌握这种解题方法.15、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵,设a=2k,b=5k,∴【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.16、1【分析】把代入已知方程,求得,然后得的值即可.【详解】解:把代入已知方程得,∴,故答案为1.【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系.17、40°.【解析】根据直径所对的圆心角是直角,然后根据直角三角形的两锐角互余求得∠A的度数,最后根据同弧所对的圆周角相等即可求解.【详解】∵AB是圆的直径,∴∠ACB=90°,∴∠A=90°-∠ABC=90°-50°=40°.∴∠D=∠A=40°.故答案为:40°.【点睛】本题考查了圆周角定理,直径所对的圆周角是直角以及同弧所对的圆周角相等,理解定理是关键.18、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.三、解答题(共78分)19、(1)CD与⊙O相切,证明见解析;(2).【分析】(1)连接OC,由于FD是CE的垂直平分线,所以∠E=∠DCE,又因为∠A=∠OCA,∠A+∠E=90°,所以∠OCA+∠DCE=90°,所以CD与⊙O相切.(2)连接BC,易知∠ACB=90°,所以△ACB∽ABE,所以由于AC•AE=84,所以OA=AB=.【详解】(1)连接OC,如图1所示.∵FD是CE的垂直平分线,∴DC=DE,∴∠E=∠DCE,∵OA=OC,∴∠A=∠OCA,∵Rt△ABE中,∠B=90°,∴∠A+∠E=90°,∴∠OCA+∠DCE=90°,∴OC⊥CD,∴CD与⊙O相切.(2)连接BC,如图2所示.∵AB是⊙O直径,∴∠ACB=90°,∴△ACB∽ABE,∴,∵AC=6,CE=8,∴AE=14,∵AC•AE=84,∴AB2=84,∴AB=2,∴OA=.【点睛】此题考查圆的切线的判定定理,三角形相似的判定及性质定理,题中根据问题连接相应的辅助线是解题的关键.20、(1)见解析(2)【分析】(1)由AB为⊙O的直径,易证得AC⊥BD,又由DC=CB,根据线段垂直平分线的性质,可证得AD=AB,即可得:∠B=∠D;(2)首先设BC=x,则AC=x-2,由在Rt△ABC中,,可得方程:,解此方程即可求得CB的长,继而求得CE的长.【详解】解:(1)证明:∵AB为⊙O的直径,∴∠ACB=90°∴AC⊥BC∵DC=CB∴AD=AB∴∠B=∠D(2)设BC=x,则AC=x-2,在Rt△ABC中,,∴,解得:(舍去).∵∠B=∠E,∠B=∠D,∴∠D=∠E∴CD=CE∵CD=CB,∴CE=CB=.21、(1)(0≤t≤4);(2)t1=2,t2=;(2)经过点D的双曲线(k≠0)的k值不变,为.【分析】(1)过点P作PE⊥BC于点E,由点P,Q的出发点、速度及方向可找出当运动时间为t秒时点P,Q的坐标,进而可得出PE,EQ的长,再利用勾股定理即可求出y关于t的函数解析式(由时间=路程÷速度可得出t的取值范围);

(2)将PQ=代入(1)的结论中可得出关于t的一元二次方程,解之即可得出结论;

(2)连接OB,交PQ于点D,过点D作DF⊥OA于点F,求得点D的坐标,再利用反比例函数图象上点的坐标特征即可求出k值,此题得解.【详解】解:(1)过点P作PE⊥BC于点E,如图1所示.

当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4-t,2),

∴PE=2,EQ=|4-t-t|=|4-t|,

∴PQ2=PE2+EQ2=22+|4-t|2=t2-20t+21,

∴y关于t的函数解析式及t的取值范围:y=t2−20t+21(0≤t≤4);

故答案为:y=t2−20t+21(0≤t≤4).

(2)当PQ=时,t2−20t+21=()2

整理,得1t2-16t+12=0,

解得:t1=2,t2=.

(2)经过点D的双曲线y=(k≠0)的k值不变.

连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.

∵OC=2,BC=4,

∴OB==1.

∵BQ∥OP,

∴△BDQ∽△ODP,

∴,

∴OD=2.

∵CB∥OA,

∴∠DOF=∠OBC.

在Rt△OBC中,sin∠OBC=,cos∠OBC==,

∴OF=OD•cos∠OBC=2×=,DF=OD•sin∠OBC=2×=,

∴点D的坐标为(,),

∴经过点D的双曲线y=(k≠0)的k值为×=..【点睛】此题考查勾股定理、解直角三角形、解一元二次方程、相似三角形的判定与性质、平行线的性质以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用勾股定理,找出y关于t的函数解析式;(2)通过解一元二次方程,求出当PQ=时t的值;(2)利用相似三角形的性质及解直角三角形,找出点D的坐标.22、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明,得出,从而可得出结果;(3)设OD与圆弧的交点为F,则根据S阴影=S△AOD-S△AOC-S扇形COF求解.【详解】(1)证明:∵是直径,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:设OD与圆弧的交点为F,设,则,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO为等边三角形,S阴影=S△AOD-S扇形COF-S△AOC=.【点睛】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.23、(1)证明见解析;(2)15.【解析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.

(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论