2023届山东省泰安市宁阳县九年级数学第一学期期末考试模拟试题含解析_第1页
2023届山东省泰安市宁阳县九年级数学第一学期期末考试模拟试题含解析_第2页
2023届山东省泰安市宁阳县九年级数学第一学期期末考试模拟试题含解析_第3页
2023届山东省泰安市宁阳县九年级数学第一学期期末考试模拟试题含解析_第4页
2023届山东省泰安市宁阳县九年级数学第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知(,),下列变形错误的是()A. B. C. D.2.下列判断错误的是()A.有两组邻边相等的四边形是菱形 B.有一角为直角的平行四边形是矩形C.对角线互相垂直且相等的平行四边形是正方形 D.矩形的对角线互相平分且相等3.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件4.抛物线y=-2(x+3)2-4的顶点坐标是:A.(3,-4) B.(-3,4) C.(-3,-4) D.(-4,3)5.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位6.如图所示,在边长为1的小正方形网格中,两个三角形是位似图形,则它们的位似中心是()A.点O B.点P C.点M D.点N7.若关于的一元二次方程有两个不相等的实数根,则的取值范围()A.且 B. C. D.8.下列运算正确的是()A. B.C. D.9.下列一元二次方程中有两个相等实数根的是()A.2x2-6x+1=0 B.3x2-x-5=0 C.x2+x=0 D.x2-4x+4=010.已知二次函数的图象如图所示,则下列结论正确的是()A. B. C. D.的符号不能确定二、填空题(每小题3分,共24分)11.计算:=.12.小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为________.13.如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.14.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.15.抛物线的顶点坐标为______.16.如图,已知正方形ABCD的边长为1,点M是BC边上的动点(不与B,C重合),点N是AM的中点,过点N作EF⊥AM,分别交AB,BD,CD于点E,K,F,设BM=x.(1)AE的长为______(用含x的代数式表示);(2)设EK=2KF,则的值为______.17.若a、b、c、d满足ab=cd=18.如图,AB是⊙O的直径,D是⊙O上的任意一点(不与点A、B重合),延长BD到点C,使DC=BD,则△ABC的形状:_____三、解答题(共66分)19.(10分)(1)已知a,b,c,d是成比例线段,其中a=2cm,b=3cm,d=6cm,求线段c的长;(2)已知,且a+b﹣5c=15,求c的值.20.(6分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?21.(6分)元旦了,九(2)班每个同学都与全班同学交换一件自制的小礼物,结果全班交换小礼物共1560件,求九(2)班有多少个同学?22.(8分)如图所示,在△ABC中,∠B=90°,AB=11mm,BC=14mm,动点P从点A开始,以1mm/S的速度沿边AB向B移动(不与点B重合),动点Q从点B开始,以4m/s的速度沿边BC向C移动(不与C重合),如果P、Q分别从A、B同时出发,设运动的时间为xs,四边形APQC的面积为ymm1.(1)写出y与x之间的函数表达式;(1)当x=1时,求四边形APQC的面积.23.(8分)A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.24.(8分)解方程:25.(10分)一个不透明的布袋里装有2个白球和2个红球,它们除颜色外其余都相同.(1)从中任意摸出1个球,则摸到红球的概率是;(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球是同色的概率.26.(10分)如图,在平面直角坐标系中,已知三个顶点的坐标分别是,,.(1)以点为位似中心,将缩小为原来的得到,请在轴右侧画出;(2)的正弦值为.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C.由等式性质可得:3b=4a,正确;D.由等式性质可得:4a=3b,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.2、A【分析】根据菱形,矩形,正方形的判定逐一进行分析即可.【详解】A.有两组邻边相等的四边形不一定是菱形,故该选项错误;B.有一角为直角的平行四边形是矩形,故该选项正确;C.对角线互相垂直且相等的平行四边形是正方形,故该选项正确;D.矩形的对角线互相平分且相等,故该选项正确;故选:A.【点睛】本题主要考查菱形,矩形,正方形的判定,掌握菱形,矩形,正方形的判定方法是解题的关键.3、C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.4、C【解析】试题分析:抛物线的顶点坐标是(-3,-4).故选C.考点:二次函数的性质.5、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【点睛】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.6、B【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【详解】解:位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心(如图)在M、N所在的直线上,点P在直线MN上,所以点P为位似中心.

故选:B.【点睛】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.7、A【分析】根据题意可得k满足两个条件,一是此方程是一元二次方程,所以二次项系数k不等于0,二是方程有两个不相等的实数根,所以b2-4ac>0,根据这两点列式求解即可.【详解】解:根据题意得,k≠0,且(-6)2-36k>0,解得,且.故选:A.【点睛】本题考查一元二次方程的定义及利用一元二次方程根的情况确定字母系数的取值范围,根据需满足定义及根的情况列式求解是解答此题的重要思路.8、D【分析】根据题意利用合并同类项法则、完全平方公式、同底数幂的乘法运算法则及幂的乘方运算法则,分别化简求出答案.【详解】解:A.合并同类项,系数相加字母和指数不变,,此选项不正确;B.,是完全平方公式,(a-b)2=a2-2ab+b2,此选项错误;C.,同底数幂乘法底数不变指数相加,a2·a3=a5,此选项不正确;D.,幂的乘方底数不变指数相乘,(-a)4=(-1)4.a4=a4,此选项正确.故选:D【点睛】本题考查了有理式的运算法则,合并同类项的关键正确判断同类项,然后按照合并同类项的法则进行合并;遇到幂的乘方时,需要注意若括号内有“-”时,其结果的符号取决于指数的奇偶性.9、D【解析】试题分析:选项A,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,即可得该方程有两个不相等的实数根;选项B△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,即可得该方程有两个不相等的实数根;选项C,△=b2﹣4ac=12﹣4×1×0=1>0,即可得该方程有两个不相等的实数根;选项D,△=b2﹣4ac=(﹣4)2﹣4×1×4=0,即可得该方程有两个相等的实数根.故选D.考点:根的判别式.10、A【分析】由题意根据二次函数的图象与性质即可求出答案判断选项.【详解】解:由图象可知开口向上a>0,与y轴交点在上半轴c>0,∴ac>0,故选A.【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:原式==9﹣1=1,故答案为1.考点:二次根式的混合运算.12、上午8时【解析】解:根据地理知识,北半球不同时刻太阳高度角不同影长也不同,规律是由长变短,再变长.故答案为上午8时.点睛:根据北半球不同时刻物体在太阳光下的影长是由长变短,再变长来解答此题.13、或14【解析】点E在直线AC上,本题分两类讨论,翻折后点F在BC线段上或点F在CB延长线上,根据一线三角的相似关系求出线段长.【详解】解:按两种情况分析:①点F在线段BC上,如图所示,由折叠性质可知∠A=∠DFE=60°∵∠BFD+∠CFE=120°,∠BFD+∠BDF=120°∴∠BDF=∠CFE∵∠B=∠C∴△BDF∽△CFE,∴∵AB=4,BF:FC=1:3∴BF=1,CF=3设AE=x,则EF=AE=x,CE=4﹣x∴解得BD=,DF=∵BD+DF=AD+BD=4∴解得x=,经检验当x=时,4﹣x≠0∴x=是原方程的解②当点F在线段CB的延长线上时,如图所示,同理可知△BDF∽△CFE∴∵AB=4,BF:FC=1:3,可得BF=2,CF=6设AE=a,可知AE=EF=a,CE=a﹣4∴解得BD=,DF=∵BD+DF=BD+AD=4∴解得a=14经检验当a=14时,a﹣4≠0∴a=14是原方程的解,综上可得线段AE的长为或14故答案为或14【点睛】本题考查了翻折问题,根据点在不同的位置对问题进行分类,并通过一线三角形的相似关系建立方程是本题的关键.14、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.15、【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.16、x【分析】(1)根据勾股定理求得AM,进而得出AN,证得△AEN∽△AMB,由相似三角形的性质即可求得AE的长;(2)连接AK、MG、CK,构建全等三角形和直角三角形,证明AK=MK=CK,再根据四边形的内角和定理得∠AKM=90°,利用直角三角形斜边上的中线等于斜边的一半得NK=AM=AN,然后根据相似三角形的性质求得==x,即可得出=x.【详解】(1)解:∵正方形ABCD的边长为1,BM=x,∴AM=,∵点N是AM的中点,∴AN=,∵EF⊥AM,∴∠ANE=90°,∴∠ANE=∠ABM=90°,∵∠EAN=∠MAB,∴△AEN∽△AMB,∴=,即=,∴AE=,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性△ABK≌△CBK,∴AK=CK,∠KAB=∠KCB,∵EF⊥AM,N为AM中点,∴AK=MK,∴MK=CK,∠KMC=∠KCM,∴∠KAB=∠KMC,∵∠KMB+∠KMC=180°,∴∠KMB+∠KAB=180°,又∵四边形ABMK的内角和为360°,∠ABM=90°,∴∠AKM=90°,在Rt△AKM中,AM为斜边,N为AM的中点,∴KN=AM=AN,∴=,∵△AEN∽△AMB,∴==x,∴=x,故答案为:x.【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=

AN是解题的关键.17、3【解析】根据等比性质求解即可.【详解】∵ab∴a+cb+d=a故答案为:34【点睛】本题考查了比例的性质,主要利用了等比性质.等比性质:在一个比例等式中,两前项之和与两后项之和的比例与原比例相等.对于实数a,b,c,d,且有b≠0,d≠0,如果ab=c18、等腰三角形【分析】△ABC为等腰三角形,理由为:连接AD,由AB为圆O的直径,利用直径所对的圆周角为直角得到AD垂直于BC,再由BD=CD,得到AD垂直平分BC,利用线段垂直平分线定理得到AB=AC,可得证.【详解】解:△ABC为等腰三角形,理由为:

连接AD,

∵AB为圆O的直径,

∴∠ADB=90°,

∴AD⊥BC,又BD=CD,

∴AD垂直平分BC,

∴AB=AC,

则△ABC为等腰三角形.

故答案为:等腰三角形.【点睛】此题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理是解本题的关键.三、解答题(共66分)19、(1)1;(2)-1【分析】(1)根据比例线段的定义得到a:b=c:d,然后把a=2cm,b=3cm,d=6cm代入进行计算即可;

(2)设=k,得出a=2k,b=3k,c=1k,代入a+b-5c=15,求出k的值,从而得出c的值.【详解】(1)∵a,b,c,d是成比例线段

∴,

即,

∴c=1;

(2)设=k,则a=2k,b=3k,c=1k,

∵a+b-5c=15

∴2k+3k-20k=15

解得:k=-1

∴c=-1.【点睛】此题考查比例线段,解题关键是理解比例线段的概念,列出比例式,用到的知识点是比例的基本性质.20、(1)∴.(2)m=2或3.【解析】(1)利用一元二次方程求根根式解方程.(2)利用(1)中x的值来确定m的值.【详解】解:(1)根据题意得m≠1,△=(–2m)2-4(m-1)(m+1)=4,∴.(2)由(1)知,∵方程的两个根都是正整数,∴是正整数.∴m-1=1或2..∴m=2或3.考点:公式法解一元二次方程,一元二次方程的解.21、40个【解析】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据全班交换小礼物共1560件,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设九(2)班有x个同学,则每个同学交换出(x﹣1)件小礼物,根据题意得:x(x﹣1)=1560,解得:x1=40,x2=﹣39(不合题意,舍去).答:九(2)班有40个同学.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22、(1)y=4x1﹣14x+144;(1)111mm1.【分析】(1)用x表示PB和BQ.利用两个直角三角形的面积差求得答案即可;(1)求出x=1时,y的值即可得.【详解】解:(1)∵运动时间为x,点P的速度为1mm/s,点Q的速度为4mm/s,∴PB=11﹣1x,BQ=4x,∴y=.(1)当x=1时,y=4×11﹣14×1+144=111,即当x=1时,四边形APQC的面积为111mm1.【点睛】本题考查了几何动点与二次函数的问题,解题的关键是根据动点的运动表示出函数关系式.23、(1);(2).【分析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论