2023届山东省青岛4中数学九年级第一学期期末考试模拟试题含解析_第1页
2023届山东省青岛4中数学九年级第一学期期末考试模拟试题含解析_第2页
2023届山东省青岛4中数学九年级第一学期期末考试模拟试题含解析_第3页
2023届山东省青岛4中数学九年级第一学期期末考试模拟试题含解析_第4页
2023届山东省青岛4中数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.已知如图,则下列4个三角形中,与相似的是()A. B.C. D.2.下列方程有两个相等的实数根是()A.x﹣x+3=0 B.x﹣3x+2=0 C.x﹣2x+1=0 D.x﹣4=03.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°4.如图,抛物线交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个结论:①点C的坐标为(0,m);②当m=0时,△ABD是等腰直角三角形;③若a=-1,则b=4;④抛物线上有两点P(,)和Q(,),若<1<,且+>2,则>.其中结论正确的序号是()A.①② B.①②③ C.①②④ D.②③④5.如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A. B. C. D.6.如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A.米 B.米 C.米 D.米7.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A. B. C. D.8.甲袋中装有形状、大小与质地都相同的红球3个,乙袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.从甲袋中随机摸出1个球,是黄球B.从甲袋中随机摸出1个球,是红球C.从乙袋中随机摸出1个球,是红球或黄球D.从乙袋中随机摸出1个球,是黄球9.二次函数y=a(x+k)2+k,无论k为何实数,其图象的顶点都在()A.直线y=x上 B.直线y=﹣x上 C.x轴上 D.y轴上10.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3 C.y=﹣ D.y=x2﹣111.已知3x=4y(x≠0),则下列比例式成立的是()A. B. C. D.12.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°二、填空题(每题4分,共24分)13.关于x的一元二次方程没有实数根,则实数a的取值范围是.14.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.15.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=5cm,则EF=_______cm.16.若点C是线段AB的黄金分割点且AC>BC,则AC=_____AB(用含无理数式子表示).17.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:苹果损坏的频率0.1060.0970.1010.0980.0990.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.18.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.三、解答题(共78分)19.(8分)如图,一次函数的图象与反比例函数的图象相交于点,两点,与,轴分别交于,两点.(1)求一次函数的表达式;(2)求的面积.20.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x为何值时,k1x+b﹣<0;(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.21.(8分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.22.(10分)已知二次函数.(1)求证:不论m取何值,该函数图像与x轴一定有两个交点;(2)若该函数图像与x轴的两个交点为A、B,与y轴交于点C,且点A坐标(2,0),求△ABC面积.23.(10分)某商业银行为提高存款额,经过最近的两次提高利息,使一年期存款的年利率由1.96%提高至2.25%,平均每次增加利息的百分率是多少?(结果写成a%的形式,其中a保留小数点后两位)24.(10分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求是多少?请同学们阅读以下解答过程就知道答案了.设,则即:事实上,按照这位大臣的要求,放满一个棋盘上的个格子需要粒米.那么到底多大呢?借助计算机中的计算器进行计算,可知答案是一个位数:,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,则塔的顶层共有多少盏灯?计算:某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,求满足如下条件的所有正整数,且这一数列前项和为的正整数幂.请直接写出所有满足条件的软件激活码正整数的值.25.(12分)学校决定每班选取名同学参加全国交通安全日细节关乎生命安全文明出行主题活动启动仪式,班主任决定从名同学(小明、小山、小月、小玉)中通过抽签的方式确定名同学去参加该活动.抽签规则:将名同学的姓名分别写在张完全相同的卡片正面,把张卡片的背面朝上,洗匀后放在桌子上,王老师先从中随机抽取一张卡片,记下名字,再从剩余的张卡片中随机抽取一张,记下名字.(1)小刚被抽中是___事件,小明被抽中是____事件(填不可能、必然、随机),第一次抽取卡片抽中是小玉的概率是______;(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小月被抽中的概率.26.如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据相似三角形的判定定理逐一分析即可.【详解】解:∵AB=AC=6,∠B=75°∴∠B=∠C=75°∴∠A=180°-∠B-∠C=30°,对于A选项,如下图所示∵,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于B选项,如下图所示∵DE=DF=EF∴△DEF是等边三角形∴∠E=60°∴,但∠A≠∠E∴与△EFD不相似,故本选项不符合题意;对于C选项,如下图所示∵,∠A=∠E=30°∴∽△EFD,故本选项符合题意;对于D选项,如下图所示∵,但∠A≠∠D∴与△DEF不相似,故本选项不符合题意;故选C.【点睛】此题考查的是相似三角形的判定,掌握有两组对应边对应成比例,且夹角相等的两个三角形相似是解决此题的关键.2、C【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.3、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.4、C【分析】根据二次函数图像的基本性质依次进行判断即可.【详解】①当x=0时,y=m,∴点C的坐标为(0,m),该项正确;②当m=0时,原函数解析式为:,此时对称轴为:,且A点交于原点,∴B点坐标为:(2,0),即AB=2,∴D点坐标为:(1,1),根据勾股定理可得:BD=AD=,∴△ABD为等腰三角形,∵,∴△ABD为等腰直角三角形,该项正确;③由解析式得其对称轴为:,利用其图像对称性,∴当若a=-1,则b=3,该项错误;④∵+>2,∴,又∵<1<,∴-1<1<-1,∴Q点离对称轴较远,∴>,该项正确;综上所述,①②④正确,③错误,故选:C.【点睛】本题主要考查了二次函数图像解析式与其函数图像的性质综合运用,熟练掌握相关概念是解题关键.5、D【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【详解】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα=,故选:D.【点睛】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6、A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,

AC=AB•sinα=9sin31°(米).

故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.7、B【分析】先由三视图得出圆柱的底面直径和高,然后根据圆柱的体积=底面积×高计算即可.【详解】解:由三视图可知圆柱的底面直径为,高为,底面半径为,,故选B.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.8、D【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.从甲袋中随机摸出1个球,是黄球是不可能事件;B.从甲袋中随机摸出1个球,是红球是必然事件;C.从乙袋中随机摸出1个球,是红球或黄球是必然事件;D.从乙袋中随机摸出1个球,是黄球是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、B【解析】试题分析:根据函数解析式可得:函数的顶点坐标为(-k,k),则顶点在直线y=-x上.考点:二次函数的顶点10、C【分析】根据反比例函数的定义逐一判断即可.【详解】A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点睛】本题考查反比例函数的定义,掌握反比例函数的定义是解题的关键.11、B【解析】根据比例的基本性质:内项之积等于外项之积,逐项判断即可.【详解】A、由=得4x=3y,故本选项错误;B、由=得3x=4y,故本选项正确;C、由=得xy=12,故本选项错误;D、由=得4x=3y,故本选项错误;故选:B.【点睛】本题考查了比例的基本性质,熟练掌握内项之积等于外项之积是解题的关键.12、D【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故选D.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.二、填空题(每题4分,共24分)13、a>1.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<1,解得:a>1,故答案为a>1.考点:根的判别式.14、1【解析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【详解】抛物线的解析式为y=x2-6x-16,

则D(0,-16)

令y=0,解得:x=-2或8,

函数的对称轴x=-=3,即M(3,0),

则A(-2,0)、B(8,0),则AB=10,

圆的半径为AB=5,

在Rt△COM中,

OM=5,OM=3,则:CO=4,

则:CD=CO+OD=4+16=1.故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.15、1【详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位线,∴EF=×10=1cm.故答案为1.考点:三角形中位线定理;直角三角形斜边上的中线.16、【分析】直接利用黄金分割的定义求解.【详解】解:∵点C是线段AB的黄金分割点且AC>BC,∴AC=AB.故答案为:.【点睛】本题考查了黄金分割的定义,点C是线段AB的黄金分割点且AC>BC,则,正确理解黄金分割的定义是解题的关键.17、0.23【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,

所以苹果的损坏概率为0.2.

根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克.

设每千克苹果的销售价为x元,则应有9000x=2.2×20000+23000,

解得x=3.

答:出售苹果时每千克大约定价为3元可获利润23000元.

故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.18、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.三、解答题(共78分)19、(1);(2)8【分析】(1)根据题意先把,代入确定A点和B点坐标,然后利用待定系数法求一次函数解析式即可;(2)根据题意分别求出C、D点的坐标,进而根据面积公式进行运算可得结论.【详解】解:(1)把,代入得,把和代入得,所以一次函数表达式为.(2)在中含得,令得,,,.【点睛】本题考查反比例函数与一次函数的交点问题,注意掌握求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解以及掌握待定系数法求函数解析式.20、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)【分析】(1)把B点坐标代入反比例函数解析式可求得k2的值,把点A(m,1)代入求得的反比例函数的解析式求得m,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A、B的坐标根据图象可求得答案;(3)设点P的坐标为,则C(m,m﹣3),由△POC的面积为3,得到△POC的面积,求得m的值,即可求得P点的坐标.【详解】解:(1)将B(﹣1,﹣4)代入得:k2=4∴反比例函数的解析式为,将点A(m,1)代入y2得,解得m=4,∴A(4,1)将A(4,1)、B(﹣1,﹣4)代入一次函数y1=k1x+b得解得k1=1,b=﹣3∴一次函数的解析式为y1=x﹣3;(2)由图象可知:x<﹣1或0<x<4时,k1x+b﹣<0;(3)如图:设点P的坐标为,则C(m,m﹣3)∴,点O到直线PC的距离为m∴△POC的面积=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为或(1,4)或(2,2).【点睛】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,三角形面积,熟练掌握待定系数法是解题的关键.21、(1)见解析(2)【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【详解】(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴MB=OB=1,OM==.∵∠DOF=60°,∴∠MOF=90°.∴MF=.【点睛】本题考查了切线的判定、圆周角定理、勾股定理、直角三角形的性质、垂径定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.22、(1)见解析;(2)10【分析】(1)令y=0得到关于x的二元一次方程,然后证明△=b2−4ac>0即可;(2)令y=0求出抛物线与x轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为=,且,所以.所以该函数的图像与x轴一定有两个交点.(2)将A(-1,0)代入函数关系式,得,,解得m=3,求得点B、C坐标分别为(4,0)、(0,-4).所以△ABC面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x轴的交点坐标是解答问题(2)的关键.23、平均每次增加利息的百分率约为7.14%【分析】设平均每增加利息的百分率为x,则两次增加利息后,利率为1.96%(1+x)2,由题意可列出方程,求解x即可.【详解】解:设平均每增加利息的百分率为x,由题意,得1.96%(1+x)2=2.25%解方程得x=0.0714或-2.0714(舍去)故平均每次增加利息的百分率7.14%答:平均每次增加利息的百分率约为7.14%.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.24、(1)3;(2);(3)【分析】设塔的顶层共有盏灯,根据题意列出方程,进行解答即可.参照题目中的解题方法进行计算即可.由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别分别即可求得N的值【详解】设塔的顶层共有盏灯,由题意得.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论