版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在同一个直角坐标系中,一次函数y=ax+c,与二次函数y=ax2+bx+c图像大致为()A. B. C. D.2.若关于x的一元二次方程方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k≥0 B.k>0且k≠1 C.k≤0且k≠﹣1 D.k>03.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A.方案一 B.方案二C.两种方案一样 D.工龄短的选方案一,工龄长的选方案二4.下列命题中,①直径是圆中最长的弦;②长度相等的两条弧是等弧;③半径相等的两个圆是等圆;④半径不是弧,半圆包括它所对的直径,其中正确的个数是()A. B. C. D.5.下列品牌的运动鞋标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.100m C.150m D.50m7.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,现有结论:①abc>0②9a﹣3b+c=0③b=﹣2a④(﹣1)b+c<0,其中正确的有()A.1个 B.2个 C.3个 D.4个8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20° B.30° C.40° D.60°10.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变11.以下列长度的线段为边,可以作一个三角形的是()A. B. C. D.12.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形 B.正五边形 C.正六边形 D.正七边形二、填空题(每题4分,共24分)13.如图,一个半径为,面积为的扇形纸片,若添加一个半径为的圆形纸片,使得两张纸片恰好能组合成一个圆锥体,则添加的圆形纸片的半径为____.14.如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),则点B的坐标为______.15.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.16.某扇形的弧长为πcm,面积为3πcm2,则该扇形的半径为_____cm17.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=_____.18.已知是一元二次方程的一个根,则的值是______.三、解答题(共78分)19.(8分)阅读以下材料,并按要求完成相应的任务.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现在的数学语言表达是:如图,为的直径,弦,垂足为,寸,尺,其中1尺寸,求出直径的长.解题过程如下:连接,设寸,则寸.∵尺,∴寸.在中,,即,解得,∴寸.任务:(1)上述解题过程运用了定理和定理.(2)若原题改为已知寸,尺,请根据上述解题思路,求直径的长.(3)若继续往下锯,当锯到时,弦所对圆周角的度数为.20.(8分)已知,如图,△ABC中,AD是中线,且CD2=BE·BA.求证:ED·AB=AD·BD.21.(8分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?22.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.23.(10分)如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.24.(10分)如图,在和中,,点为射线,的交点.(1)问题提出:如图1,若,.①与的数量关系为________;②的度数为________.(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.25.(12分)计算:(1);(2)解方程:.26.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出关于原点对称的;(2)在轴上求作一点,使的周长最小,请画出,并直接写出的坐标.
参考答案一、选择题(每题4分,共48分)1、D【分析】先分析一次函数,得到a、c的取值范围后,对照二次函数的相关性质是否一致,可得答案.【详解】解:依次分析选项可得:
A、分析一次函数y=ax+c可得,a>0,c>0,二次函数y=ax2+bx+c开口应向上;与图不符.
B、分析一次函数y=ax+c可得,a<0,c>0,二次函数y=ax2+bx+c开口应向下,在y轴上与一次函数交于同一点;与图不符.
C、分析一次函数y=ax+c可得,a<0,c<0,二次函数y=ax2+bx+c开口应向下;与图不符.
D、一次函数y=ax+c和二次函数y=ax2+bx+c常数项相同,在y轴上应交于同一点;分析一次函数y=ax+c可得a<0,二次函数y=ax2+bx+c开口向下;符合题意.
故选:D.【点睛】本题考查一次函数、二次函数的系数与图象的关系,有一定难度,注意分析简单的函数,得到信息后对照复杂的函数.2、B【解析】根据一元二次方程定义,首先要求的二次项系数不为零,再根据已知条件,方程有两个不相等的实数根,令根的判别式大于零即可.【详解】解:由题意得,解得,;且,即,解得.综上所述,且.【点睛】本题主要考查一元二次方程的定义和根的判别式,理解掌握定义,熟练运用根的判别式是解答关键.3、B【分析】根据题意分别计算出方案一和方案二的第n年的年收入,进行大小比较,从而得出选项.【详解】解:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,故选方案二更划算;故选B.【点睛】本题考查方案选择,解题关键是准确理解题意根据题意列式比较方案间的优劣进行分析.4、C【分析】根据弦、弧、等弧的定义即可求解.【详解】解:①直径是圆中最长的弦,真命题;
②在等圆或同圆中,长度相等的两条弧是等弧,假命题;
③半径相等的两个圆是等圆,真命题;④半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题.
故选:C.【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).5、D【分析】根据轴对称图形和中心对称图形的定义即可得出答案.【详解】A是轴对称图形,但不是中心对称图形,故此选项不符合题意;B不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C不是轴对称图形,也不是中心对称图形,故此选项不符合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意.故选D.【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、A【解析】∵堤坝横断面迎水坡AB的坡比是1:,∴,∵BC=50,∴AC=50,∴(m).故选A7、C【分析】根据抛物线的开口方向、对称轴的位置,顶点坐标,以及二次函数的增减性,逐个进行判断即可.【详解】解:∵抛物线y=ax2+bx+c开口向上,对称轴是x=1,与y轴的交点在负半轴,∴a>0,b<0,c<0,∴abc>0,因此①正确;∵对称轴是x=1,即:=1,也就是:b=﹣2a,因此③正确;由抛物线y=ax2+bx+c经过点(﹣1,0),对称轴是x=1,可得与x轴另一个交点坐标为(3,0),∴9a+3b+c=0,而b≠0,因此②9a﹣3b+c=0是不正确的;∵(﹣1)b+c=b﹣b+c,b=﹣2a,∴(﹣1)b+c=2a+b+c,把x=代入y=ax2+bx+c得,y=2a+b+c,由函数的图象可得此时y<0,即:(﹣1)b+c<0,因此④是正确的,故正确的结论有3个,故选:C.【点睛】考查二次函数的图象和性质,掌握二次函数的图象和性质是正确解答的关键,将问题进行适当的转化,是解决此类问题的常用方法.8、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算9、C【解析】试题分析:由线段AB是⊙O的直径,弦CD丄AB,根据垂径定理的即可求得:,然后由圆周角定理可得∠BOD=2∠CAB=2×20°=40°.故选C.考点:圆周角定理;垂径定理.10、D【解析】试题分析:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.【考点】简单组合体的三视图.11、B【分析】根据三角形的三边关系定理逐项判断即可.【详解】A、,不满足三角形的三边关系定理,此项不符题意B、,满足三角形的三边关系定理,此项符合题意C、,不满足三角形的三边关系定理,此项不符题意D、,不满足三角形的三边关系定理,此项不符题意故选:B.【点睛】本题考查了三角形的三边关系定理:任意两边之和大于第三边,熟记定理是解题关键.12、C【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;
D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选:C.【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每题4分,共24分)13、1【分析】能组合成圆锥体,那么扇形的弧长等于圆形纸片的周长.应先利用扇形的面积=圆锥的弧长×母线长÷1,得到圆锥的弧长=1扇形的面积÷母线长,进而根据圆锥的底面半径=圆锥的弧长÷1π求解.【详解】解:∵圆锥的弧长=1×11π÷6=4π,
∴圆锥的底面半径=4π÷1π=1cm,
故答案为1.【点睛】解决本题的难点是得到圆锥的弧长与扇形面积之间的关系,注意利用圆锥的弧长等于底面周长这个知识点.14、(6,0)【详解】解:过点P作PM⊥AB于M,则M的坐标是(4,0)∴MB=MA=4-2=2,∴点B的坐标为(6,0)15、【分析】根据概率的求解公式,首先弄清非负数卡片有3张,共有5张卡片,即可算出概率.【详解】由题意,得数字是非负数的卡片有0,|-2|,,共3张,则抽到非负数的概率是,故答案为:.【点睛】此题主要考查概率的求解,熟练掌握,即可解题.16、1【分析】根据扇形的面积公式S=,可得出R的值.【详解】解:∵扇形的弧长为πcm,面积为3πcm2,扇形的面积公式S=,可得R=故答案为1.【点睛】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.17、3【分析】利用60°余弦值可求得OB的长,作AD⊥OB于点D,利用60°的正弦值可求得AD长,利用60°余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积.【详解】解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴BD=AB×sin60°=,AD=AB×cos60°=1,∴OD=OA﹣AD=3,∴点B的坐标为(3,),∵B是双曲线y=上一点,∴k=xy=3.故答案为:3.【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积.18、0【分析】将代入方程中,可求出m的两个解,然后根据一元二次方程的定义即可判断m可取的值.【详解】解:将代入一元二次方程中,得解得:∵是一元二次方程∴解得故m=0故答案为:0.【点睛】此题考查的是一元二次方程的定义和解,掌握一元二次方程的二次项系数不为0和解的定义是解决此题的关键.三、解答题(共78分)19、(1)垂径,勾股;(2)26寸;(3)或【分析】(1)由解题过程可知根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,即可得到答案.
(2)连接OA,设OA=r寸,则OE=DE-r=25-r,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.
(3)当AE=OE时,△AEO是等腰直角三角形,则∠AOE=45°,∠AOB=90°,所以由圆周角定理推知弦AB所对圆周角的度数为45°或135°.【详解】解:(1)根据题意知,上述解题过程运用了垂径定理和勾股定理.
故答案是:垂径;勾股;
(2)连接OA,设OA=r寸,则OE=DE-r=(25-r)寸
∵AB⊥CD,AB=1尺,∴AE=AB=5寸
在Rt△OAE中,OA2=AE2+OE2,即r2=52+(25-r)2,解得r=13,
∴CD=2r=26寸
(2)∵AB⊥CD,
∴当AE=OE时,△AEO是等腰直角三角形,
∴∠AOE=45°,
∴∠AOB=2∠AOE=90°,
∴弦AB所对圆周角的度数为∠AOB=45°.
同理,优弧AB所对圆周角的度数为135°.
故答案是:45°或135°.【点睛】此题考查圆的综合题,圆周角定理,垂径定理,勾股定理,等腰直角三角形的判定与性质,综合性较强,解题关键在于需要我们熟练各部分的内容,要注意将所学知识贯穿起来.20、证明见解析【解析】试题分析:由AD是中线以及CD2=BE·BA可得,从而可得△BED∽△BDA,根据相似三角形的性质问题得证.试题解析:∵AD是中线,∴BD=CD,又CD2=BE·BA,∴BD2=BE·BA,即,又∠B=∠B,∴△BED∽△BDA,∴,∴ED·AB=AD·BD.【点睛】本题考查了相似三角形的判定与性质,根据已知得到△BED∽△BDA是解决本题的关键.21、(1);(2)时,w最大;(3)时,每天的销售量为20件.【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.22、(1)75;4;(2)CD=4.【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.23、(1)见解析;(2)见解析【分析】(1)过点D作DF⊥AC于F,求出BD=DF等于半径,得出AC是⊙D的切线;(2)根据HL先证明Rt△BDE≌Rt△DCF,再根据全等三角形对应边相等及切线的性质得出AB=AF,即可得出AB+BE=AC.【详解】证明:(1)过点D作DF⊥AC于F;∵AB为⊙D的切线,AD平分∠BAC,∴BD=DF,∴AC为⊙D的切线.(2)∵AC为⊙D的切线,∴∠DFC=∠B=90°,在Rt△BDE和Rt△FCD中;∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FCD(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC.【点睛】本题考查的是切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线;以及及全等三角形的判断与性质,角平分线的性质等.24、(1);;(2)成立,理由见解析【分析】(1)①依据等腰三角形的性质得到A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《肠炎性疾病》课件
- 《军人核心价值观》课件
- 2024中国电信股份限公司保山分公司(保山电信)招聘16人(云南)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国旅游集团战略发展部副总经理公开招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国国际工程咨询限公司总部社招易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人文科学发展公司管理岗位公开招聘1人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中交铁道设计研究总院限公司招聘21人易考易错模拟试题(共500题)试卷后附参考答案
- 2024上海申通地铁建设集团限公司高校毕业生招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度技术秘密转让合同-技术秘密保密与使用权2篇
- 2024年度品牌授权使用与管理合同3篇
- 项目进度跟进汇总表模板
- 人工智能基础与应用课件
- 2022-2023学年广州市南沙区小升初全真模拟数学检测卷含答案
- 第六讲 以新发展理念引领高质量发展PPT习概论2023优化版教学课件
- 会议记录格式及范文电子版(24篇)
- 比亚迪宋PLUS EV说明书
- 家长学校教研活动记录文本表
- 儿童口腔项目方案
- 树合规风做合规人银行合规培训PPT
- 新媒体营销完整PPT全套教学课件
- 枣庄市专业技术人员继续教育公需科目2021年度补考题库及卫生专科课题库
评论
0/150
提交评论