版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.数据60,70,40,30这四个数的平均数是()A.40 B.50 C.60 D.702.抛物线的图象先向右平移2个单位,再向下平移3个单位,所得图象的函数解析式为,则b、c的值为A.b=2,c=﹣6 B.b=2,c=0 C.b=﹣6,c=8 D.b=﹣6,c=23.若二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(3,0),则方程ax2+bx+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3C.x1=﹣1,x2=3 D.x1=﹣3,x2=14.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.5.已知点都在反比例函数的图像上,那么()A. B. C. D.的大小无法确定6.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个7.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.48.在比例尺为1:1000000的地图上量得A,B两地的距离是20cm,那么A、B两地的实际距离是()A.2000000cm B.2000m C.200km D.2000km9.已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A.﹣<m<3 B.﹣<m<2 C.﹣2<m<3 D.﹣6<m<﹣210.如图,在平面直角坐标系中,点在直线上,连接,将线段绕点顺时针旋转90°,点的对应点恰好落在直线上,则的值为()A.2 B.1 C. D.二、填空题(每小题3分,共24分)11.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.12.如图,已知点A、B分别在反比例函数,的图象上,且,则的值为______.13.已知正方形ABCD的对角线长为8cm,则正方形ABCD的面积为_____cm1.14.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.16.如图,在平面直角坐标系中,点A,B,C都在格点上,过A,B,C三点作一圆弧,则圆心的坐标是_____.17.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=3,那么正方形ABCD的面积是__________.18.已知是方程的一个根,则代数式的值为__________.三、解答题(共66分)19.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?20.(6分)伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?21.(6分)我市要选拔一名教师参加省级评优课比赛:经笔试、面试,结果小潘和小丁并列第一,评委会决定通过摸球来确定人选.规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个蓝球,小潘先取出一个球,记住颜色后放回,然后小丁再取出一个球.若两次取出的球都是红球,则小潘胜出;若两次取出的球是一红一蓝,则小丁胜出.你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析.22.(8分)如图,在中,是边上的一点,若,求证:.23.(8分)如图,等腰中,,点是边上一点,在上取点,使(1)求证:;(2)若,求的长.24.(8分)如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.(1)求线段的长;(2)如图2,,分别是线段,上的动点(与端点不重合),且.①求证:∽;②是否存在这样的点,使是等腰三角形?若存在,请求出的长;若不存在,请说明理由.25.(10分)如图,在平行四边形中,点在边上,,连接交于点,则的面积与的面积之比为多少?26.(10分)如图,在△ABC中,∠CAB=90°,D是边BC上一点,,E为线段AD的中点,连结CE并延长交AB于点F.(1)求证:AD⊥BC.(2)若AF:BF=1:3,求证:CD:DB=1:2.
参考答案一、选择题(每小题3分,共30分)1、B【分析】用四个数的和除以4即可.【详解】(60+70+40+30)÷4=200÷4=50.故选B.【点睛】本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).2、B【详解】函数的顶点坐标为(1,﹣4),∵函数的图象由的图象向右平移2个单位,再向下平移3个单位得到,∴1﹣2=﹣1,﹣4+3=﹣1,即平移前的抛物线的顶点坐标为(﹣1,﹣1).∴平移前的抛物线为,即y=x2+2x.∴b=2,c=1.故选B.3、C【分析】利用抛物线与x轴的交点问题确定方程ax2+bx+c=0的解.【详解】解:∵二次函数y=ax2+bx+c的图象经过点(﹣1,0)和(1,0),∴方程ax2+bx+c=0的解为x1=﹣1,x2=1.故选:C.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.4、C【解析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.5、C【分析】由反比例函数的比例系数为正,那么图象过第一,三象限,根据反比例函数的增减性可得m和n的大小关系.【详解】解:∵点A(m,1)和B(n,3)在反比例函数(k>0)的图象上,
1<3,
∴m>n.
故选:C.【点睛】此题考查了反比例函数图象上点的坐标特征,解决本题的关键是根据反比例函数的比例系数得到函数图象所在的象限,用到的知识点为:k>0,图象的两个分支分布在第一,三象限,在每一个象限内,y随x的增大而减小.6、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【点睛】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.7、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.8、C【分析】比例尺=图上距离:实际距离,根据比例尺关系可直接得出A、B两地的实际距离.【详解】根据比例尺=图上距离:实际距离,得A、B两地的实际距离为20×1000000=20000000(cm),20000000cm=200km.故A、B两地的实际距离是200km.故选:C.【点睛】本题考查了线段的比,能够根据比例尺正确进行计算,注意单位的转化.9、D【解析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.10、D【分析】根据已知条件可求出m的值,再根据“段绕点顺时针旋转90°”求出点B坐标,代入即可求出b的值.【详解】解:∵点在直线上,∴,∴又∵点B为点A绕原点顺时针旋转90°所得,∴点B坐标为,又∵点B在直线,代入得∴故答案为D.【点睛】本题考查了一次函数与旋转的相关知识,解题的关键是能够根据已知条件得出点B的坐标.二、填空题(每小题3分,共24分)11、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.12、【分析】作轴于C,轴于D,如图,利用反比例函数图象上点的坐标特征和三角形面积公式得到,,再证明∽,然后利用相似三角形的性质得到的值,即可得出.【详解】解:作轴于C,轴于D,如图,点A、B分别在反比例函数,的图象上,,,,,,∽,,.故答案为.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数为常数,的图象是双曲线,图象上的点的横纵坐标的积是定值k,即.13、31【分析】根据正方形的对角线相等且互相垂直,正方形是特殊的菱形,菱形的面积等于对角线乘积的一半进行求解即可.【详解】解:∵四边形ABCD为正方形,∴AC=BD=8cm,AC⊥BD,∴正方形ABCD的面积=×AC×BD=31cm1,故答案为:31.【点睛】本题考查了求解菱形的面积,属于简单题,熟悉求解菱形面积的特殊方法是解题关键.14、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.15、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【点睛】本题考查扇形面积,解题的关键是掌握扇形面积公式.16、(2,1)【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.【详解】根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为:(2,1).【点睛】本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.17、1【分析】由正方形的面积公式可求解.【详解】解:∵AC=3,
∴正方形ABCD的面积=3×3×=1,
故答案为:1.【点睛】本题考查了正方形的性质,熟练运用正方形的性质是解题的关键.18、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【点睛】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.三、解答题(共66分)19、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.20、(1)当每吨销售价为1万元或2万元时,销售利润为
0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);
(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:
w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,
令w=0.96,则-x2+3x-1.04=0.96
解得x1=1,x2=2,
答:当每吨销售价为1万元或2万元时,销售利润为
0.96万元;
(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,
当x=1.5时,w最大=1.21,
∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.21、这个规则对双方是公平的【分析】根据树状图列出共有9种可能,两次都是红球和一红一蓝的概率是否相同,相同即公平,不同即不公平,即可判断出.【详解】解:树状图或列表对由此可知,共有9种等可能的结果,其中两红球及一红一蓝各有4种结果∵P(都是红球)=,P(1红1蓝)=∴P(都是红球)=P(1红1蓝)∴这个规则对双方是公平的【点睛】此题主要考查了用树状图求概率的方法,将实际生活中转化为数学模式是解题的关键.22、见解析【分析】根据相似三角形的判定,由题意可得,进而根据相似三角形的性质,可得,推论即可得出结论.【详解】证明:∵,∴,∴,即.【点睛】本题主要考察了相似三角形的判定以及性质,灵活运用相关性质是解题的关键.23、(1)见解析;(2).【分析】(1)利用三角形外角定理证得∠EDC=∠DAB,再根据两角相等即可证明△ABD∽△DCE;(2)作高AF,利用三角函数求得,继而求得,再根据△ABD∽△DCE,利用对应边成比例即可求得答案.【详解】(1)∵△ABC是等腰三角形,且∠BAC=120°,
∴∠ABD=∠ACB=30°,
∴∠ABD=∠ADE=30°,
∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,
∴∠EDC=∠DAB,
∴△ABD∽△DCE;(2)过作于,∵△ABC是等腰三角形,且∠BAC=120°,,∴∠ABD=∠ACB=30°,,则,,,,,,所以.【点睛】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、解直角三角形,证得△ABD∽△DCE是解题的关键.24、(1)2;(2)①见解析;②存在.由①得△DMN∽△DGM,理由见解析【分析】(1)根据矩形的性质和折叠的性质得出AD=AF、DE=EF,进而设EC=x,则DE=EF=8﹣x,利用勾股定理求解即可得出答案;(2)①根据平行线的性质得出△DAE∽△CGE求得CG=6,进而根据勾股定理求出DG=1,得出AD=DG,即可得出答案;②假设存在,由①可得当△DGM是等腰三角形时△DMN是等腰三角形,分两种情况进行讨论:当MG=DG=1时,结合勾股定理进行求解;当MG=DM时,作MH⊥DG于H,证出△GHM∽△GBA,即可得出答案.【详解】解:(1)如图1中,∵四边形ABCD是矩形,∴AD=BC=1,AB=CD=8,∠B=∠BCD=∠D=90°,由翻折可知:AD=AF=1.DE=EF,设EC=x,则DE=EF=8﹣x.在Rt△ABF中,BF==6,∴CF=BC﹣BF=1﹣6=4,在Rt△EFC中,则有:(8﹣x)2=x2+42,∴x=2,∴EC=2.(2)①如图2中,∵AD∥CG,∴∠DAE=∠CGE,∠ADE=∠G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产项目施工合同流程解析
- 福州房屋买卖合同公证服务
- 通信设备总经理招聘合同
- 学校网签版施工合同
- 城市地下供水箱涵施工协议
- 矿泉水企业聘用合同范本
- 商务写字楼租赁合同三篇
- 游泳教练员培训合同三篇
- 土地租赁合同安全责任条款
- 集体公共设施用地出让合同
- 校园暴力课件
- Java Web程序设计教程(第二版)(微课版)01 Web应用开发概述
- 小学信息技术三年级上册第9课 《电子文本需保存》说课稿
- 运动解剖学(72学时)学习通超星期末考试答案章节答案2024年
- 八年级上册物理全册知识点总结(人教)
- 高铁乘务礼仪培训
- 新能源汽车发展趋势报告-2024
- 二年级上册语文期末必考古诗、课文总复习
- 文书模板-《厂房光伏租赁合同》
- 工业自动化生产线操作手册
- 2024年就业协议书样本
评论
0/150
提交评论