分子生物学笔记:干细胞_第1页
分子生物学笔记:干细胞_第2页
分子生物学笔记:干细胞_第3页
分子生物学笔记:干细胞_第4页
分子生物学笔记:干细胞_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

干细胞1干细胞概述胚胎干细胞的分化性成体干细胞的可塑性1干细胞概述胚胎干细胞的分化性成体干细胞的可塑性按照发育阶段分类胚胎干细胞(EmbryonicStemcell,ES细胞)。成体■造血■肌肉■骨髓2干细胞应用研究■美容领域■器官移植■疾病治疗■生物修复■神经干细胞概述编辑干(gM)细胞即为起源细胞。干细胞是具有增殖和分化潜能的细胞,具有自我更新复制的能力(Self-renewing),能够产生高度分化的功能细胞。简单来讲,它是一类具有多向分化潜能和自我复制能力的原始的未分化细胞,是形成哺乳类动物的各组织器官的原始细胞。干细胞在形态上具有共性,通常呈圆形或椭圆形,细胞体积小,核相对较大,细胞核多为常染色质,并具有较高的端粒酶活性。干细胞可分为胚胎干细胞和成体干细胞。干细胞是自我复制还是分化功能细胞,主要由于细胞本身的状态和微环境因素所决定。包括调节细胞周期的各种周期素(Cyclin)和周期素依赖激酶(Cyclin-DependentKinase)、基因转录因子、影响细胞不对称分裂的细胞质因子。微环境因素,包括干细胞与周围细胞,干细胞与外基质以及干细胞与各种可溶性因子的相互作用。人体内的干细胞分两种类型,一种是全功能干细胞(totipotentstemcell),可直接克隆人体;另一种是多功能干细胞(pluripotentstemcell),可直接复制各种脏器和修复组织。人类寄希望于利用干细胞的分离和体外培养,在体外繁育出组织或器官,并最终通过组织或器官移植,实现对临床疾病的治疗。“原位培植皮肤干细胞再生新皮肤技术”不仅实现了利用干细胞复制皮肤器官,而且做到了人体原位皮肤器官的复制,从而使人类从干细胞体外培植组织成器官移植治疗,直接跨入了人体原位干细胞复制器官。科学家普遍认为:干细胞的研究将为临床医学提供更为广阔的应用前景。干细胞具有经培养不定期地分化并产生特化细胞的能力。在正常的人体发育环境中,它们得到了最好的诠释。人体发育起始于卵子的受精,产生一个能发育为完整有机体潜能的单细胞,即全能性受精卵。受精后的最初几个小时内,受精卵分裂为一些完全相同的全能细胞。这意味着如果把这些细胞的任何一个放入女性子宫内,均有可能发育成胎儿。实际上,当两个全能细胞分别发育为单独遗传基因型的人时,即出现了各方面都完全相同的双胞胎。大约在受精后四天,经过几个循环的细胞分裂之后,这些全能细胞开始特异化,形成一个中空环形的细胞群结构,称之为胚囊,胚囊由外层细胞和位于中空球形内的细胞簇(称为内细胞群)所构成。外层细胞继续发展,形成胎盘以及胎儿在子宫内发育所需的其它支持组织。内细胞群细胞亦继续发育,形成人体所须的全部组织。尽管内细胞群可形成人体内的所有组织,但它们不能发育为一个单独的生物体,因为它们不能形成胎盘以及子宫内发育所需的支持组织。这些内细胞群细胞是多能性的----它们能产生许多种类型的细胞,但并非胎儿发育所需的全部细胞类型。因为它们不是全能性的,不是胚胎,没有完全的发育潜能。如果内细胞群被放入女性子宫,它不会发育成胎儿。多能性干细胞经历进一步的特异分化,发展为参与生成特殊功能细胞的干细胞。如造血干细胞,它能产生红细胞、白细胞和血小板。又如皮肤干细胞,它能产生各种类型的皮肤细胞。这些更专门化的干细胞被称为专能干细胞。胚胎干细胞(Embryonicstemcell)的发育等级较高,是全能干细胞(Totipotentstemcell),而成体干细胞的发育等级较低,是多能干细胞或单能干细胞。干细胞的发育受多种内在机制和微环境因素的影响。人类胚胎干细胞已可成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其他类型的细胞和组织,为干细胞的广泛应用提供了基础。在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞的组织或器官。胚胎的分化形成和成体组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成体组织或器官内的干细胞一般认为具有组织特异性,只能分化成特定的细胞或组织。最新的研究表明,组织特异性干细胞同样具有分化成其他细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。干细胞对早期人体的发育特别重要,在儿童和成年人中也可发现专能干细胞。举我们所最熟知的干细胞之一,造血干细胞为例,造血干细胞存在于每个儿童和成年人的骨髓之中,也存在于循环血液中,但数量非常少。在我们的整个生命过程中,造血干细胞在不断地向人体补充血细胞一一红细胞、白细胞和血小板的过程中起着很关键的作用。如果没有造血干细胞,我们就无法存活。干细胞是一类具有自我更新和分化潜能的细胞。人类胚胎干细胞已成功地在体外培养。最新研究发现,成体干细胞可以横向分化为其它类型的细胞和组织,为干细胞的广泛应用提供了基础。在胚胎的发生发育中,单个受精卵可以分裂发育为多细胞组织或器官。在成年动物中,正常的生理代谢或病理损伤也会引起组织或器官的修复再生。胚胎的分化形成和成年组织的再生是干细胞进一步分化的结果。胚胎干细胞是全能的,具有分化为几乎全部组织和器官的能力。而成年组织或器官内的干细胞一般认为具有组织特异性,只能分化特定的细胞或组织。然而,这个观点受到了挑战。最新的研究表明,组织特异性干细胞同样具有分化成其它细胞或组织的潜能,这为干细胞的应用开创了更广泛的空间。按分化潜能的大小,干细胞基本上可分为三种类型:一类是全能性干细胞,它具有形成完整个体的分化潜能。如胚胎干细胞,它是从早期胚胎内的细胞团分离出来的一种高度未分化的细胞系,具有与早期胚胎细胞相似的形态特征和很强的分化能力,它可以无限增殖并分化成为全身200多种细胞类型,进一步形成机体的所有组织、器官。另一类是多能性干细胞,这种干细胞具有分化出多种细胞组织的潜能,但却失去了发育成完整个体的能力,发育潜能受到一定的限制,骨髓多能造血干细胞是典型的例子,它可分化出至少十一中血细胞,但不分化出造血系统以外的其他细胞。还有一类干细胞为单能干细胞(也称专能、偏能干细胞),这类干细胞只能向一种类型或密切相关的两种类型的细胞分化,如上皮组织基底层的干细胞、肌肉中的成肌细胞。总之,凡需要不断产生新的分化细胞以及分化细胞本身不能再分裂的细胞或组织,都要通过干细胞所产生的具有分化能力的细胞来维持肌体细胞的数量,可以这样说,生命是通过干细胞的分裂来实现细胞的更新及保证持续生长。胚胎干细胞的分化性胚胎干细胞具有万能分化性(pluripotency)功能,特点是可以细胞分化(Cellulardifferentiation成多种组织的能力,但无法独自发育成一个个体。它可以差转成为外胚层、中胚层及内胚层三种胚层的成员,然后再差转成为人体的220多种细胞种类。万能分化性是胚胎干细胞与在成年人体内可找到的多功能干细胞的主要分别:多功能干细胞只能差转成为某几种特定的细胞种类。在无外界提供差转的刺激之下(即可在实验环境下生长),胚胎干细胞在经过多重细胞分裂之后,仍然能保有万能分化性。成人干细胞能否保有万能分化性,直到现在仍然有争议。不过,有研究已示范了万能干细胞可以从成纤维细胞集丛产生出来。成体干细胞的可塑性越来越多的证据表明,当成体干细胞被移植入受体中,它们表现出很强的可塑性。通常情况下,供体的干细胞在受体中分化为与其组织来源一致的细胞。而在某些情况下干细胞的分化并不遵循这种规律。1999年Goodell等人分离出小鼠的肌肉干细胞,体外培养5天后,与少量的骨髓间质细胞一起移植入接受致死量辐射的小鼠中,结果发现肌肉干细胞会分化为各种血细胞系。这种现象被称为干细胞的横向分化(trans-differentiation)[5]。关于横向分化的调控机制还不清楚。大多数观点认为干细胞的分化与微环境密切相关。可能的机制是,干细胞进入新的微环境后,对分化信号的反应受到周围正在进行分化的细胞的影响,从而对新的微环境中的调节信号做出反应。克隆猪、克隆羊,其技术的机制原理和干细胞是一致的。按照发育阶段分类胚胎干细胞(EmbryonicStemCell)和成体干细胞(AdultStemCell)。1、胚胎干细胞包括ES细胞(EmbryonicStemCell)、EG细胞(EmbryonicGermCell)2、成体干细胞包括神经干细胞(NeuralStemCe11,NSC)、血液干细胞(HematopoieticStemCell,HSC)、骨髓间充质干细胞(MesenchymalStemCell,MSC)、表皮干细胞(EPidexmisStemCell)等。按分化潜能,干细胞可分为,全能干细胞,亚全能干细胞,多能干细胞,单能干细胞。全能干细胞:具有形成完整个体的分化潜能,如受精卵亚全能干细胞:为人类体内存在为数不多的三胚层分化潜能干细胞多能干细胞:具有分化出多种细胞组织的潜能。如胚胎干细胞(ES)单能干细胞:只能向一种或两种密切相关的细胞类型分化。如神经干细胞、造血干细胞胚胎干细胞:ES细胞是一种高度未分化细胞。它具有发育的全能性,能分化出成体动物的所有组织和器官,包括生殖细胞。研究和利用ES细胞是当前生物工程领域的核心问题之一。在未来几年,ES细胞移植和其它先进生物技术的联合应用很可能在移植医学领域引发革命性进步。胚胎干细胞可来源于畸胎瘤细胞(EC)、桑椹球细胞(ES)、囊胚内细胞团(ES)、拟胚体细胞(ES)、生殖原基细胞(EG)等。当受精卵分裂发育成囊胚时,将内细胞团(nnerCellMass)分离出来进行培养,在一定条件下,这些细胞可在体外“无限期”地增殖传代,同时还保持其全能性,因此被称为胚胎干细胞。胚胎干细胞在培养条件下,若加入白血病抑制因子LIF(LeukaemiaInhibitoryFactor),则能保持在未分化状态,若去掉LIF,胚胎干细胞迅速分化,最终产生多种细胞系,如肌肉细胞、血细胞、神经细胞或发育成“胚胎体”。成体干细胞:成年动物的许多组织和器官,比如表皮和造血系统,具有修复和再生的能力。成体干细胞在其中起着关键的作用。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡。成体干细胞可以由下列几个方面得到:⑴胚胎细胞一一由胚胎干细胞定向分化,或移植分化而成。⑵胚胎组织——由分离胚胎组织、细胞分离、或培养而成。⑶成体组织一一由脐血、新生儿胎盘、骨髓、外周血、骨髓间质、脂肪细胞等得到。造血干细胞:造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性转移性肿瘤疾病的最有效方法。与骨髓移植和外周血干细胞移植相比,脐血干细胞移植的长处在于无来源的限制,对HLA配型要求不高,不易受病毒或肿瘤的污染。神经干细胞:神经干细胞的研究尚处初级阶段。理论上讲,任何一种中枢神经疾病都可归结为神经干细胞功能的紊乱。给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经细胞,可治愈部分患者的症状。周边血干细胞:骨髓中存有人体内最主要造血干细胞的来源,而周边血干细胞则是指借由施打白细胞生长激素(G-CSF),将骨髓中的干细胞驱动至血液中,再经由血液分离机收集取得之干细胞.由于与骨髓干细胞极为相近,现已逐渐取代需要全身麻醉的骨髓抽取手术.脂肪干细胞:以往人们因塑身而抽出的脂肪,大部分都当废弃物丢掉,现经由医学专家研究证,脂肪中含有大量的间质干细胞,间质干细胞具有体外增生及多重分化的潜力,能运用于组织与器官的再生与修复.骨髓间充质干细胞(mesenchymalstemcells,MSC):是干细胞家族的重要成员,来源于发育早期的中胚层和外胚层.MSC最初在骨髓中发现,因其具有多向分化潜能、造血支持和促进干细胞植入、免疫调控和自我复制等特点而日益受到人们的关注.如间充质干细胞在体内或体外特定的诱导条件下,可分化为脂肪、骨、软骨、肌肉、肌腱、韧带、神经、肝、心肌、内皮等多种组织细胞,连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于衰老和病变引起的组织器官损伤修复.骨髓间充质干细胞由于其来源广泛,易于分离培养,并且具有较强的分化潜能和可自体移植等优点,越来越受到学者们的青睐,被认为是不久即将被引入临床治疗的最优干细胞.心脏干细胞:以色列的科学家研究出了一种用干细胞做成的心脏,这是由干细胞的分裂形成的。胎盘造血干细胞:胎盘是胎儿和母亲血液交换的场所,含有非常丰富的血液微循环。人在母亲子宫内发育的阶段,胎盘是首先形成的器官之一。胎盘中含有大量的早期干细胞,包括数量丰富的造血干细胞。这些干细胞在胎盘中行使着造血的功能。小孩出生后剥离的胎盘内所含的造血干细胞,可以分化形成各种血细胞(红细胞、白细胞、血小板等)的祖宗,注射到体内可以发挥造血功能。胎盘亚全能干细胞:亚全能干细胞自胚胎形成的第5到7天开始出现,能分化形成200多种人体组织器官细胞,但不能形成一个完整的人体。胎盘亚全能干细胞是来源于新生儿胎盘组织的一族亚全能干细胞,其在发育阶段与胚胎干细胞接近,具备分化形成三个胚层的组织细胞的能力,但不会形成畸胎瘤。羊膜干细胞:来源于羊膜上皮,表达多种胚胎干细胞的标志物,具有多系分化的能力,其分化能力超过骨髓来源的间充质干细胞,具有较低的免疫原性。胚胎干细胞(EmbryonicStemcell,ES细胞)胚胎干细胞当受精卵分裂发育成囊胚时,内层细胞团(InnerCellMass)的细胞即为胚胎干细胞。胚胎干细胞具有全能性,可以自我更新并具有分化为体内所有组织的能力。早在1970年MartinEvans已从小鼠中分离出胚胎干细胞并在体外进行培养。而人的胚胎干细胞的体外培养才获得成功。进一步说,胚胎干细胞(ES细胞)是一种高度未分化细胞。ES细胞的研究可追溯到上世纪五十年代,由于畸胎瘤干细胞(EC细胞)的发现开始了ES细胞的生物学研究历程。许多研究工作都是以小鼠ES细胞为研究对象展开的,如:德美医学小组在成功的向试验鼠体内移植了由ES细胞培养出的神经胶质细胞。密苏里的研究人员通过鼠胚细胞移植技术,使瘫痪的猫恢复了部分肢体活动能力。随着ES细胞的研究日益深入,生命科学家对人类ES细胞的了解迈入了一个新的阶段。在98年末,两个研究小组成功的培养出人类ES细胞,保持了ES细胞分化为各种体细胞的全能性。这样就使科学家利用人类ES细胞治疗各种疾病成为可能。然而,人类ES细胞的研究工作引起了全世界范围内的很大争议,出于社会伦理学方面的原因,有些国家甚至明令禁止进行人类ES细胞研究。无论从基础研究角度来讲还是从临床应用方面来看,人类ES细胞带给人类的益处远远大于在伦理方面可能造成的负面影响,因此要求展开人类ES细胞研究的呼声也一浪高似一浪。成体过去认为成体干细胞主要包括上皮干细胞和造血干细胞。研究表明,以往认为不能再生的神经组织仍然包含神经干细胞,说明成体干细胞普遍存在,问题是如何寻找和分离各种组织特异性干细胞。成体干细胞经常位于特定的微环境中。微环境中的间质细胞能够产生一系列生长因子或配体,与干细胞相互作用,控制干细胞的更新和分化。造血造血干细胞是体内各种血细胞的唯一来源,它主要存在于骨髓、外周血、脐带血中、胎盘组织中。协和医大血液学研究所的庞文新又在肌肉组织中发现了具有造血潜能的干细胞。造血干细胞的移植是治疗血液系统疾病、先天性遗传疾病以及多发性和转移性恶性肿瘤疾病的最有效方法。在临床治疗中,造血干细胞应用较早,在20世纪五十年代,临床上就开始应用骨髓移植(BMT)方法来治疗血液系统疾病。到八十年代末,外周血干细胞移植(PBSCT)技术逐渐推广开来,绝大多数为自体外周血干细胞移植(APBSCT),在提高治疗有效率和缩短疗程方面优于常规治疗,且效果令人满意。在东北地区首例脐血干细胞移植成功,又为中国造血干细胞移植技术注入新的活力。随着脐血干细胞移植技术的不断完善,它可能会代替APBSCT的地位,为全世界更多的血液病及恶性肿瘤的患者带来福音。神经神经干细胞关于神经干细胞研究起步较晚,由于分离神经干细胞所需的胎儿脑组织较难取材,加之胚胎细胞研究的争议尚未平息,神经干细胞的研究仍处于初级阶段。理论上讲,任何一种中枢神经系统疾病都可归结为神经干细胞功能的紊乱。脑和脊髓由于血脑屏障的存在使之在干细胞移植到中枢神经系统后不会产生免疫排斥反应,如:给帕金森氏综合症患者的脑内移植含有多巴胺生成细胞的神经干细胞,可治愈部分患者症状。除此之外,神经干细胞的功能还可延伸到药物检测方面,对判断药物有效性、毒性有一定的作用。实际上,到目前为止,人们对干细胞的了解仍存在许多盲区。2000年年初美国研究人员无意中发现在胰腺中存有干细胞;加拿大研究人员在人、鼠、牛的视网膜中发现了始终处于“休眠状态的干细胞”;有些科学家证实骨髓干细胞可发育成肝细胞,脑干细胞可发育成血细胞。随着干细胞研究领域向深度和广度不断扩展,人们对干细胞的了解也将更加全面。21世纪是生命科学的时代,也是为人类的健康长寿创造世界奇迹的时代,干细胞的应用将有广阔前景。肌肉成肌细胞(myoblasts)可发育分化为成肌细胞(myocytes),后者可互相融合成为多核的肌纤维,形成骨骼肌最基本的结构。皿3骨髓骨髓间充质干细胞(mesenchymalstemcells,MSC)是干细胞家族的重要成员,来源于发育早期的中胚层和外胚层。骨髓间充质干细胞具有如下的优点:一.具有强大的增殖能力和多向分化潜能,在适宜的体内或体外环境下不仅可分化为造血细胞,还具有分化为肌细胞、肝细胞、成骨细胞、软骨细胞、基质细胞等多种细胞的能力。二.具有免疫调节功能,从而发挥免疫重建的功能。干细胞的调控是指给出适当的因子条件,对干细胞的增殖和分化进行调控,使之向指定的方向发展。内源性调控干细胞自身有许多调控因子可对外界信号起反应从而调节其增殖和分化,包括调节细胞不对称分裂的蛋白,控制基因表达的核因子等。另外,干细胞在终末分化之前所进行的分裂次数也受到细胞内调控因子的制约。⑴细胞内蛋白对干细胞分裂的调控:干细胞分裂可能产生新的干细胞或分化的功能细胞。这种分化的不对称是由于细胞本身成分的不均等分配和周围环境的作用造成的。细胞的结构蛋白,特别是细胞骨架成分对细胞的发育非常重要。如在果蝇卵巢中,调控干细胞不对称分裂的是一种称为收缩体的细胞器,包含有许多调节蛋白,如膜收缩蛋白和细胞周期素A。收缩体与纺锤体的结合决定了干细胞分裂的部位,从而把维持干细胞性状所必需的成分保留在子代干细胞中。⑵转录因子的调控:在脊椎动物中,转录因子对干细胞分化的调节非常重要。比如在胚胎干细胞的发生中,转录因子Oct4是必需的。Oct4是一种哺乳动物早期胚胎细胞表达的转录因子,它诱导表达的靶基因产物是FGF-4等生长因子,能够通过生长因子的旁分泌作用调节干细胞以及周围滋养层的进一步分化。Oct4缺失突变的胚胎只能发育到囊胚期,其内部细胞不能发育成内层细胞团。另外白血病抑制因子(LIF)对培养的小鼠ES细胞的自我更新有促进作用,而对人的成体干细胞无作用,说明不同种属间的转录调控是不完全一致的。又如Tcf/Lef转录因子家族对上皮干细胞的分化非常重要。Tcf/Lef是Wnt信号通路的中间介质,当与B-Catenin形成转录复合物后,促使角质细胞转化为多能状态并分化为毛囊。外源性调控除内源性调控外,干细胞的分化还可受到其周围组织及细胞外基质等外源性因素的影响。⑴分泌因子:间质细胞能够分泌许多因子,维持干细胞的增殖,分化和存活。有两类因子在不同组织甚至不同种属中都发挥重要作用,它们是TGFB家族和Wnt信号通路。比如TGF家族中至少有两个成员能够调节神经嵴干细胞的分化。研究发现,胶质细胞衍生的神经营养因子(GDNF)不仅能够促进多种神经元的存活和分化,还对精原细胞的再生和分化有决定作用。GDNF缺失的小鼠表现为干细胞数量的减少,而GDNF的过度表达导致未分化的精原细胞的累积[3]。Wnts的作用机制是通过阻止B-Catenin分解从而激活Tcf/Lef介导的转录,促进干细胞的分化。比如在线虫卵裂球的分裂中,邻近细胞诱导的Wnt信号通路能够控制纺锤体的起始和内胚层的分化。⑵膜蛋白介导的细胞间的相互作用:有些信号是通过细胞-细胞的直接接触起作用的。B-Catenin就是一种介导细胞粘附连接的结构成分。除此之外,穿膜蛋白Notch及其配体Delta或Jagged也对干细胞分化有重要影响。在果蝇的感觉器官前体细胞,脊椎动物的胚胎及成年组织包括视网膜神经上皮、骨骼肌和血液系统中,Notch信号都起着非常重要的作用。当Notch与其配体结合时,干细胞进行非分化性增殖;当Notch活性被抑制时,干细胞进入分化程序,发育为功能细胞[4]。⑶整合素(Integrin)与细胞外基质:整合素家族是介导干细胞与细胞外基质粘附的最主要的分子。整合素与其配体的相互作用为干细胞的非分化增殖提供了适当的微环境。比如当B1整合素丧失功能时,上皮干细胞逃脱了微环境的制约,分化成角质细胞。此外细胞外基质通过调节B1整合素的表达和激活,从而影响干细胞的分布和分化方向。干细胞的研究被认为开始于1960年代,在加拿大科学家恩尼斯特•莫科洛克和詹姆士•堤尔的研究之后。1959年,美国首次报道了通过体外受精(WF)动物。60年代,几个近亲种系的小鼠睾丸畸胎瘤的研究表明其来源于胚胎生殖细胞(embryonicgermcells,EG细胞),此工作确立了胚胎癌细胞(embryoniccarcinomacells,EC细胞)是一种干细胞。1968年,Edwards和Bavister在体外获得了第一个人卵子。70年代,EC细胞注入小鼠胚泡产生杂合小鼠。培养的SC细胞作为胚胎发育的模型,虽然其染色体的数目属于异常。1978年,第一个试管婴儿,LouiseBrown在英国诞生。1981年,Evan,Kaufman和Martin从小鼠胚泡内细胞群分离出小鼠ES细胞。他们建立了小鼠ES细胞体外培养条件。由这些细胞产生的细胞系有正常的二倍型,像原生殖细胞一样产生三个胚层的衍生物。将ES细胞注入上鼠,能诱导形成畸胎瘤。1984—1988年,Anderews等人从人睾丸畸胎瘤细胞系Tera-2中产生出多能的、可鉴定的(克隆化的)细胞,称之为胚胎癌细胞(embryoniccarcinomacells,EC细胞)。克隆的人EC细胞在视黄酸的作用下分化形成神经元样细胞和其他类型的细胞。1989年,Pera等分离了一个人EC细胞系,此细胞系能产生出三个胚层的组织。这些细胞是非整倍体的(比正常细胞染色体多或少),他们在体外的分化潜能是有限的。1994年,通过体外授精和病人捐献的人胚泡处于2-原核期。胚泡内细胞群在培养中得以保存其周边有滋养层细胞聚集,ES样细胞位于中央。1998年美国有两个小组分别培养出了人的多能(pluripotent)干细胞:JamesA.Thomson在Wisconsin大学领导的研究小组从人胚胎组织中培养出了干细胞株。他们使用的方法是:人卵体外受精后,将胚胎培育到囊胚阶段,提取innercellmass细胞,建立细胞株。经测试这些细胞株的细胞表面marker和酶活性,证实他们就是全能干细胞。用这种方法,每个胚胎可取得15-20干细胞用于培养。JohnD.Gearhart在JohnsHopkins大学领导的另一个研究小组也从人胚胎组织中建立了干细胞株。他们的方法是:从受精后 5-9周人工流产的胚胎中提取生殖母细胞(primordialgermcell)。由此培养的细胞株,证实具有全能干细胞的特征。2000年,由Pera、Trounson和Bongso领导的新加坡和澳大利亚科学家从治疗不育症的夫妇捐赠的胚泡内细胞群中分离得到人ES细胞,这些细胞体外增殖,保持正常的核型,自发分化形成来源于三个胚层的体细胞系。将其注入免疫缺陷小鼠错开内产生畸胎瘤。2003,建立了人类皮肤细胞与兔子卵细胞种间融合的方法,为人胚胎干细胞研究提供了新的途径。2004年,MassachusettsAdvancedCellTechnology报道克隆小鼠的干细胞可以通过形成细小血管的心肌细胞修复心衰小鼠的心肌损伤。这种克隆细胞比来源于骨髓的成体干细胞修复作用更快、更有效,可以取代40%的瘢痕组织和恢复心肌功能。这是首次显示克隆干细胞在活体动物体内修复受损组织。2012年2月,赛莱拉“人干细胞生长因子在化妆品中的应用”获得国家重大发明专利。2012年12月,获批成立“广东省赛莱拉-暨南干细胞研究与储存院士工作站”。2013年05月,赛莱拉“人胎盘干细胞提取物冻干粉及其制备方法与应用”荣获国家重大发明专利。2013年12月,人胎盘干细胞研究成果荣获全国工商联“科技进步奖•优秀奖”。干细胞和再生医学的研究已成为自然科学中最为引人注目的领域。中国在干细胞低温超低温气相、液相保存技术、定向温度保存技术及超低温干细胞保存抗损伤技术等处于世界领先水平。干细胞理论的日臻完善和技术的迅猛发展必将在疾病治疗和生物医药等领域产生划时代的成果,是对传统医疗手段和医疗观念的一场重大革命。采用干细胞治疗有着多种优势:低毒性(或无毒性),即使不完全了解疾病发病的确切机理治疗也可达到较好的治疗效果,自身干细胞移植可避免产生免疫排斥反应,对传统治疗方法疗效较差的疾病多有惊人的效果。2011年5月,《自然》期刊发表研究报告指出,用皮肤干细胞制成的细胞组织,尽管是来自同一病患体内的细胞,都可能受到病患体内免疫系统的排斥,这项报告让干细胞治病的前景受到挫折。研究人员是用与胚胎干细胞类似特点的皮肤细胞,制成诱发性多能干细胞(inducedpluripotentstemcells,简称iPS细胞)。这种细胞理论上可变为神经、心脏、肝脏或其他器官的细胞,也可进行移植,修补受损的器官。iPS细胞2007年最初制成时,科学家深感震撼,因为这种细胞具有胚胎细胞缺乏的两大优点,一是没有争议,无需毁坏人类胚胎;二是因用病患本身的皮肤细胞制成,所以应当不会受到免疫系统的排斥。但第二个理论上的优点从未经过实际检验,直至圣地牙哥加州大学的华裔生物学家徐阳(YangXu,音译)和同事在试验中才发现,用老鼠皮肤制成的iPS细胞,在属性相同的老鼠体内受到排斥。很多科学家也对这样的结果感到惊讶。高级细胞技术公司科学主管兰札说:「干细胞的临床应用前景更加黯淡了。」他说,在老鼠身上的试验,不清楚是否在人类身上也产生同样结果,但一些科学家认为,结果可能相同。一些研究人员数月前指出,iPS细胞可能会产生多种形式的基因突变,最新的研究结果更使iPS细胞的应用前景失色。波士顿儿童医院的干细胞移植计划主任戴利说:「这表明我们对干细胞的本质仍然不甚了解,任何新技术在初期阶段都是先表现得痴迷,然彳爰才变得现实,我没料到会是这样的结果。」争议性研究国际权威刊物《细胞》杂志的子刊《细胞一干细胞》网络版发表了一项有争议的研究成果:一个国际研究小组在实验室中首次利用成人皮肤细胞克隆出干细胞,朝着培养患者特异性细胞系用以治疗从心脏病到失明的各类疾病迈进了一步,但这项进展也可能重启有关克隆人的伦理讨论。从理论上来说,这些干细胞可以用来制造几乎任何类型的细胞,并作为一种治疗手段植回人体。由先进细胞技术公司的罗伯特•兰扎带领的研究团队使用了与克隆“多利羊”类似的体细胞核转移技术。他们先对捐赠的未受精卵细胞进行重编程,移除了它的DNA(脱氧核糖核酸),并用来自成人供体的DNA取而代之;然后用电流刺激的方式使细胞分裂和繁殖。由此获得的细胞便拥有与成人供体相同的DNA。人类干细胞首次克隆成功是在2013年,当时美国俄勒冈健康与科学大学和俄勒冈国家灵长类研究中心的科学家使用的是来自婴儿的捐赠细胞。而新研究使用的细胞则由两位成年男性提供,一位35岁,另一位75岁。研究人员在论文中强调了这项技术用于开发新疗法的前景。虽然该研究从技术上涉及到早期胚胎,但其意图并不是要让它们发育成为人。当然,在理论上,这项技术可能是克隆一个与供体具有相同基因组成的婴儿的第一步。这就是生物伦理学家所谓的“双重用途困境”,即一种研究既可以被用于不良目的,又可能被用来造福人类。主导人类胚胎干细胞克隆研究的俄勒冈健康与科学大学胚胎细胞和基因治疗中心主任舒赫拉特•米塔利波夫强调,这项新研究并不涉及受精胚胎。胚胎研究总是会招致反对,但其潜在的利益是巨大的。研究团队尝试着克隆了39次,但只有两次获得了胚胎。起初他们也没办法让细胞繁殖,最后发现,需要等待两个小时才能诱导细胞成功繁殖。但研究人员表示,利用这项技术来培育患者特异性干细胞是可能的,并且患者的年龄不受限制。随着基因工程、胚胎工程、细胞工程等各种生物技术的快速发展,按照一定的目的,在体外人工分离、培养干细胞已成为可能,利用干细胞构建各种细胞、组织、器官作为移植器官的来源,这将成为干细胞应用的主要方向。科学家将人类干细胞植入猪身体且无排斥性2014年6月6日,科学家已成功将人类干细胞移植到基因改造猪的体内,没有出现排斥现象。由于这些细胞得以茁壮成长,人们有望通过移植干细胞来治疗使人衰弱的疾病。这项突破性技术还有助于为免疫力严重不足的患者找到治疗方法。这项突破性研究有助于治疗严重免疫性缺陷的患者群体,当前,对于干细胞治疗有效性医学研究的一个最大挑战是移植或者嫁接细胞经常被主体排斥。研究小组将人类多功能干细胞植入密苏里大学生殖生理学教授兰德尔-普拉瑟(RandallPrather)培育的转基因实验猪体内,这只猪的免疫系统使它能够无排斥性接受所有移植和嫁接。当科学家将这些人类干细胞植入猪的身体,它对人类干细胞并不产生排斥性,并且能够存活下来。普拉瑟说:“这项实验的成功性具有显著意义,因为猪比其它测试动物更接近人类。”许多医学研究人员愿意对猪进行实验是因为从解剖学上猪比其它动物更类似于人类,体型上猪比老鼠等其它动物更接近人类,它们适用于类似的健康治疗。这意味着对猪的实验研究很可能获得类似于人类进行不同的测试和治疗。干细胞应用研究美容领域人体的衰老,皱纹的出现,究其根源实质上都是细胞的衰老和减少。而细胞的衰老和减少则是由干细胞老化引起的。干细胞是各种组织细胞更新换代的种子细胞,是人体细胞的生产厂。干细胞族群的老化严重减弱了其增殖和分化的能力,新生的细胞补充不足,衰老细胞不能及时被替代,全身各系统功能下降,让人一天天老去。而你的皮肤,也因为皮肤干细胞的衰老而无法及时更新,衰老的皮肤得不到修复,所以,你有了皱纹,失去了青春容颜。干细胞美容原理是通过输注特定的多种细胞(包括各种干细胞和免疫细胞),激活人体自身的“自愈功能”,对病变的细胞进行补充与调控,激活细胞功能,增加正常细胞的数量,提高细胞的活性,改善细胞的质量,防止和延缓细胞的病变,恢复细胞的正常生理功能,从而达到疾病康复、对抗衰老的目的。分化后的细胞,往往由于高度分化而完全丧失了再分化的能力,这样的细胞最终将衰老和死亡。然而,动物体在发育的过程中,体内却始终保留了一部分未分化的细胞,这就是干细胞,干细胞的衰老是机体衰老或人类衰老的重要因素,因而,人体干细胞移植(或注射)对阻止人类衰老意义重大。干细胞又叫做起源细胞、万用细胞,是一类具有自我更新和分化潜能的细胞。可以这样说,动物体就是通过干细胞的分裂来实现细胞的更新,从而保证动物体持续生长发育的。干细胞根据其分化潜能的大小,可以分为两类:全能干细胞和组织干细胞。前者可以分化、发育成完整的动物个体,后者则是一种或多种组织器官的起源细胞。人的胚胎干细胞可以发育成完整的人,所以属于全能干细胞。早在19世纪,发育生物学家就知道,卵细胞受精后很快就开始分裂,先是1个受精卵分裂成2个细胞,然后继续分裂,直至分裂成有16至32个细胞的细胞团,叫做桑椹胚。这时如果将组成桑椹胚的细胞一一分开,并分别植入到母体的子宫内,则每个细胞都可以发育成一个完整的胚胎。这种细胞就是胚胎干细胞,属于全能干细胞。骨髓、脐带、胎盘和脂肪中则可以获取组织干细胞。每个人的体内都有一些终生与自己相伴的干细胞。但是,人的年龄越大,干细胞就越少。为了弥补干细胞的不足,一些科学家建议从胚胎或胎儿以及其他动物身上获取干细胞。进行培养和研究。器官移植干细胞的用途非常广泛,涉及到医学的多个领域。科学家已经能够在体外鉴别、分离、纯化、扩增和培养人体胚胎干细胞,并以这样的干细胞为“种子”,培育出一些人的组织器官。干细胞及其衍生组织器官的广泛临床应用,将产生一种全新的医疗技术,也就是再造人体正常的甚至年轻的组织器官,从而使人能够用上自己的或他人的干细胞或由干细胞所衍生出的新的组织器官,来替换自身病变的或衰老的组织器官。假如某位老年人能够使用上自己或他人婴幼儿时期或者青年时期保存起来的干细胞及其衍生组织器官,那么,这位老年人的寿命就可以得到明显的延长。美国《科学》杂志于1999年将干细胞研究列为世界十大科学成就的第一,排在人类基因组测序和克隆技术之前。新加坡国立大学医院和中央医院通过脐带血干细胞移植手术,根治了一名因家族遗传而患上严重的地中海贫血症的男童,这是世界上第一例移植非亲属的脐带血干细胞而使患者痊愈的手术。医生们认为,脐带血干细胞移植手术并不复杂,就像给患者输血一样。由于脐带血自身固有的特性,使得用脐带血干细胞进行移植比用骨髓进行移植更加有效。利用造血干细胞移植技术已经逐渐成为治疗白血病、各种恶性肿瘤放化疗后引起的造血系统和免疫系统功能障碍等疾病的一种重要手段。科学家预言,用神经干细胞替代已被破坏的神经细胞,有望使因脊髓损伤而瘫痪的病人重新站立起来;不久的将来,失明、帕金森氏综合症、艾滋病、老年性痴呆、心肌梗塞和糖尿病等绝大多数疾病的患者,都可望借助干细胞移植手术获得康复。同胚胎干细胞相比,成人身体上的干细胞只能发育成20多种组织器官,而胚胎干细胞则能发育成几乎所有的组织器官。但是,如果从胚胎中提取干细胞,胚胎就会死亡。因此,伦理道理问题就成为当前胚胎干细胞研究的最大问题之一。美国政府明确反对破坏新的胚胎以获取胚胎干细胞,美国众议院甚至提出全面禁止胚胎干细胞克隆研究的法案。美国的一些科学家则对此提出了尖锐的批评,他们认为,将干细胞用于医学研究,在减轻患者痛苦方面很有潜力。如果浪费这样一个绝好的机会,结果将是悲剧性的。生命科学是二十世纪发展最为迅猛的学科之一,已经成为自然科学中最引人注目的领域。1957年,美国华盛顿大学多纳尔•托玛斯发现正常人的骨髓移植到病人体内,可以治疗造血功能障碍。这一技术的发现,使多纳尔•托玛斯本人荣获了诺贝尔奖。这一技术很快得到全世界的认可,并已成为根治白血病等病的主要手段。造血干细胞移植技术的发现和应用为人类战胜疾病带来新的希望。1999年Petersen等发现肝干细胞和一些肝细胞可能部分来源于骨髓或与骨髓相关。他们通过以下实验检测了这一思路:⑴将一雄性大鼠的骨髓移植到致死量照射的同源雌性大鼠,并用DNA探针检测受鼠肝内有无雄性来源的Y染色体。⑵用表达组织相容性抗原H类抗原L21-6的Lewis大鼠作为受体,不表达L21-6的Brown-Norway大鼠作为供体进行全肝移植,以确定肝外来源的L21-6阳性细胞是否能够定位于移植的肝脏。他们发现,在骨髓移植后13天,在肝内检测到了Y染色体信号,在这一时间卵圆细胞开始分化为肝细胞。如果分化为肝细胞的卵圆细胞来自肝脏,那么将不会有肝细胞表达阳性的Y染色体信号,但结果显示,一些肝细胞表达明显的Y染色体信号,表明它们来源于骨髓供体细胞。同样,在全肝移植后发现,在移植的肝脏内发现有明显的L21-6阳性细胞,表明一些卵圆细胞来源于肝外,而那些来源于肝内的卵圆细胞则L21-6阴性,实验表明,骨髓中含有能够分化为肝细胞潜能的干细胞,一些卵圆细胞有可能来源于骨髓。骨髓中的肝前细胞可以用于肝衰竭的移植治疗而不必考虑组织相容性抗原的配型问题,因为患者自身的骨髓细胞就可以用于移植。骨髓细胞具有以下优点:⑴可以制备富含干细胞的骨髓细胞。⑵通过转导促进基因能够增加骨髓来源的肝细胞。⑶可用骨髓来源肝细胞用于生物人工肝;此外HGF也可以通过促进包括骨髓干细胞的肝前细胞分化用于肝硬化治疗。自体骨髓干细胞移植治疗肝损伤将为肝脏疾病的治疗提供新的途径。疾病治疗干细胞治疗疾病的基本原理:对组织细胞损伤的修复、替代损伤细胞的功能、刺激机体自身细胞的再生功能。呼吸道疾病自体干细胞免疫治疗哮喘、气管炎、肺气肿、肺心病等干细胞免疫疗法是通过调控细胞因子,修复受损的组织细胞,然后通过细胞间的相互作用及产生细胞因子抑制受损细胞的增殖及其免疫反应,从而发挥免疫重建的功能。从根本上消除哮喘病的发病基础。这些治疗方法在观念上完全不同于传统的治疗方法,主要强调通过修复人体免疫细胞来治疗哮喘病等呼吸道疾病。经北京京华友好医院现代医学临床证实,干细胞免疫疗法对哮喘出现的咳嗽、多痰、胸闷等症状有明显的治疗作用。具有疗效快、疗程短、不易复发等优点,突破了以往“治疗见效一一停药复发”的弊端。其针对哮喘病特性经过细胞培养实验室特殊培养的愈喘干细胞,可以增强患者自身免疫力,舒张平滑肌,促进体内新陈代谢,修复呼吸系统损伤,激活肺部细胞再生,全面调理脾肺肾,激活肺部细胞再生修复肺通气功能,增强肺功能,充足提供肺部供氧,彻底修复肺、气道粘膜,恢复纤毛的排污能力。经过百余例的临床案例见证,其治愈率可到98%。后期配合中药调理,可长效地控制病情,是目前治疗哮喘病、气管炎最理想、最规范的治疗方法。治疗肾病干细胞移植治疗肾病的原理:因干细胞具有“无限”增殖,多向分化潜能,具有造血支持,免疫调控和自我复制等特点。可作为理想的“种子”细胞用于病变引起的组织器官损伤修复。基础研究发现干细胞可分化成肾固有细胞,肾实质细胞等,所以干细胞移植后对肾脏功能具有良好的修复和重建作用。干细胞治疗肾病的特性和优势具有强大的增殖能力和多向分化潜能,能够增殖分化并产生大量后代。低免疫原性。因细胞处于原始状态,不易被识别,所以不存在免疫排斥的特性,没有血型匹配问题。长期传代不改变生物学特性。可分化成肾固有细胞,肌细胞,肝细胞,成骨细胞,软骨细胞等多种细胞的能力。正是由于干细胞所具备的这些免疫学特性和优势,使其在肾病治疗方面具有广阔的临床应用前景。治疗脑瘫干细胞移植治疗小儿脑瘫逐渐被人们所熟知。干细胞移植治疗小儿脑瘫是根据细胞具有自我更新及分化为神经元,星形胶质细胞,少突胶质细胞潜能的神经前体细胞,细胞移植后分化的神经元补充缺损的神经元,并促进小儿脑组织中的神经细胞分化发挥功能,恢复脑神经的正常生长发育,改善大脑的认知功能障碍,为脑性瘫痪小儿进一步康复提供了更多的机会,已为先进最有效的治疗方法。并且年龄越小,再构成代偿能力越强,治疗的可能性就越大。尽早干预,治疗是预防小儿脑瘫致残的唯一途径。.自我更新:干细胞具有对称分裂及不对称分裂两种分裂方式,从而保持干细胞库稳定。.多向分化潜能:干细胞可以向神经元、星形胶质细胞和少突胶质细胞分化。低免疫源性:干细胞是未分化的原始细胞,不表达成熟的细胞抗原,不被免疫系统识别。.组织融合性好:可以与宿主的神经组织良好融合,并在宿主体内长期存活。治疗自闭症脐血干细胞和脐带间充质干细胞具有免疫调节和改善脑内微循环的功能。干细胞进入体内可调节机体免疫功能,并通过自身分化和分泌细胞因子和神经肽刺激新生血管形成,改善脑内缺血缺氧状态,激活和修复脑内受损的神经细胞。通过联合移植脐血单个核细胞和脐带间充质干细胞有助于改善患儿的语言交流能力、社会交往能力等。生物修复自身免疫性肝病是由自身免疫反应引起的一种特殊类型的慢性肝病,过去认为自身免疫性肝病比较罕见,由于对此类疾病认识不断深入以及有关免疫学检查方法和相关检查方法的引进和提高,临床上发现中国人群中自身免疫性肝病的患者不断增多。临床常见的自身免疫性肝病包括自身免疫性肝炎、原发性胆汁性肝硬化及原发性硬化性胆管炎,很多自身免疫性肝病患者还伴有其他自身免疫性疾病如干燥综合症、类风湿性关节炎等等。北京304医院肝病中心主任带领的研究小组对自身免疫性肝病的发病原因、机理及免疫治疗对策等方面进行了深入研究。国际会议将自身免疫性肝病确定为非病毒感染性的自身免疫性疾病,病人由于免疫调控功能缺陷,导致机体对自身肝细胞抗原产生反应,传统治疗还是以免疫制剂和激素为主,但无论是免疫抑制治疗还是激素冲击治疗,均在早期阶段有一定疗效,至肝硬化阶段,不仅疗效不明显,激素的不良反应也明显加重。既然同属自身免疫性疾病,发病机制也相似,那是否能使用干细胞来进行治疗?经过与风湿免疫科医生的交流,宫主任决定采用脐带间充质干细胞移植方案。宫主任说,脐带间充质干细胞具有免疫调控作用,对自身免疫性疾病能进行组织修复和免疫调节,从而达到治疗疾病的目的,如风湿免疫科已开展的系统性红斑狼疮、天疱疮、内风湿性关节炎、硬皮病和皮肌炎等,都取得了非常好的效果。ES细胞的应用前景,动物克隆及人类治疗性克隆,在转基因动物中的应用,制备嵌合体动物ES细胞研究面临的难题,体外培养ES细胞需筛选适宜的培养条件,平衡增殖和分化之间的矛盾,高度未分化,具形成畸胎瘤的可能性,真正用于器官克隆与移植仍需技术上的突破,伦理学分离方法1998年美国有两个小组分别培养出了人的多能干细胞:JamesA.Thomson在Wisconsin大学领导的研究小组从人胚胎组织中培养出了干细胞株。细胞株。经测试这些细胞株的细胞表面marker和酶活性,证实它们就是全能干细胞。目前胚胎干细胞来源主要是胚泡内细胞群和生殖嵴中的原始生殖细胞免疫学方法:干细胞表面有许多特殊标记,利用这些标记,采用荧光细胞分离器从单细胞悬液中的分离纯化干细胞。免疫外科方法:该方法基本原理是利用囊胚腔对抗体的不通透性,通过抗体、补体结合对细胞的毒性杀伤作用,去除滋养层细胞,保留CIM进行培养。组织培养:将4-6天的胚胎取出培养,滋养层在培养皿底部平铺生长,而CIM形成卵圆柱装结构,在显微镜下用玻璃针挑出这种柱状结构,消化传代显微外科学法:利用显微镜直接将CIM从胚泡中吸出进行培养。伦理之争尽管人胚胎干细胞有着巨大的医学应用潜力,但围绕该研究的伦理道德问题也随之出现。这些问题主要包括人胚胎干细胞的来源是否合乎法律及道德,应用潜力是否会引起伦理及法律问题。从体外受精人胚中获得的ES细胞在适当条件下能否发育成人?干细胞要是来自自愿终止妊娠的孕妇该如何办?为获得ES细胞而杀死人胚是否道德?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论