2023届内蒙古乌兰察布市数学九上期末统考模拟试题含解析_第1页
2023届内蒙古乌兰察布市数学九上期末统考模拟试题含解析_第2页
2023届内蒙古乌兰察布市数学九上期末统考模拟试题含解析_第3页
2023届内蒙古乌兰察布市数学九上期末统考模拟试题含解析_第4页
2023届内蒙古乌兰察布市数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.将抛物线y=(x﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣32.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能()A.4个 B.6个 C.34个 D.36个3.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.84.下列二次根式中,是最简二次根式的是()A. B. C. D.5.如图,为的直径,点为上一点,,则劣弧的长度为()A. B.C. D.6.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<17.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.8.如图,⊙O的直径长10,弦AB=8,M是弦AB上的动点,则OM的长的取值范围是()A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<59.下列二次函数的开口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-510.在平面直角坐标系内,将抛物线先向右平移个单位,再向下平移个单位,得到一条新的抛物线,这条新抛物线的顶点坐标是()A. B. C. D.二、填空题(每小题3分,共24分)11.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.12.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.13.如图,P是反比例函数y=的图象上的一点,过点P分别作x轴、y轴的垂线,得图中阴影部分的面积为3,则这个反比例函数的比例系数是_____.14.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则=____________.15.如果是一元二次方程的一个根,那么的值是__________.16.关于x的一元二次方程kx2﹣x+2=0有两个不相等的实数根,那么k的取值范围是_____.17.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.18.计算:﹣(﹣π)0+()﹣1=_____.三、解答题(共66分)19.(10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C;D();②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面的面积为;(结果保留π)④若E(7,0),试判断直线EC与⊙D的位置关系,并说明你的理由.20.(6分)实行垃圾分类和垃圾资源化利用,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.某环保公司研发了甲、乙两种智能设备,可利用最新技术将干垃圾进行分选破碎制成固化成型燃料棒,干垃圾由此变身新型清洁燃料.某垃圾处理厂从环保公司购入以上两种智能设备若干,已知购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同,且两种智能设备的单价和为万元.求甲、乙两种智能设备单价;垃圾处理厂利用智能设备生产燃料棒,并将产品出售.已知燃料棒的成本由人力成本和物资成本两部分组成,其中物资成本占总成本的,且生产每吨燃料棒所需人力成本比物资成本的倍还多元.调查发现,若燃料棒售价为每吨元,平均每天可售出吨,而当销售价每降低元,平均每天可多售出吨.垃圾处理厂想使这种燃料棒的销售利润平均每天达到元,且保证售价在每吨元基础上降价幅度不超过,求每吨燃料棒售价应为多少元?21.(6分)(1)解方程:;(2)求二次函数的图象与坐标轴的交点坐标.22.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.(1)求抛物线的解析式和直线的解析式.(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.23.(8分)如图,在平面直角坐标系中,抛物线与轴交于点,点的坐标分别是,与轴交于点.点在第一、二象限的抛物线上,过点作轴的平行线分别交轴和直线于点、.设点的横坐标为,线段的长度为.⑴求这条抛物线对应的函数表达式;⑵当点在第一象限的抛物线上时,求与之间的函数关系式;⑶在⑵的条件下,当时,求的值.24.(8分)如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.25.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.26.(10分)为测量某特种车辆的性能,研究制定了行驶指数,而的大小与平均速度和行驶路程有关(不考虑其他因素),由两部分的和组成,一部分与成正比,另一部分与成正比.在实验中得到了表格中的数据:速度路程指数(1)用含和的式子表示;(2)当行驶指数为,而行驶路程为时,求平均速度的值;(3)当行驶路程为时,若行驶指数值最大,求平均速度的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:由“左加右减”的原则可知,将抛物线y=(x-2)2-8向左平移1个单位所得直线的解析式为:y=(x+1)2-8;

由“上加下减”的原则可知,将抛物线y=(x-5)2-8向上平移5个单位所得抛物线的解析式为:y=(x+1)2-1.

故选:D.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2、B【解析】试题解析:∵摸到红色球的频率稳定在15%左右,∴口袋中红色球的频率为15%,故红球的个数为40×15%=6个.故选B.点睛:由频数=数据总数×频率计算即可.3、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【详解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故选C.4、B【分析】根据最简二次根式概念即可解题.【详解】解:A.=,错误,B.是最简二次根式,正确,C.=3错误,D.=,错误,故选B.【点睛】本题考查了最简二次根式的概念,属于简单题,熟悉概念是解题关键.5、A【分析】根据“直径所对圆周角为90°”可知为直角三角形,在可求出∠BAC的正弦值,从而得到∠BAC的度数,再根据圆周角定理可求得所对圆心角的度数,最后利用弧长公式即可求解.【详解】∵AB为直径,AO=4,∴∠ACB=90°,AB=8,在中,AB=8,BC=,∴sin∠BAC=,∵sin60°=,∴∠BAC=60°,∴所对圆心角的度数为120°,∴的长度=.故选:A.【点睛】本题考查弧长的计算,明确圆周角定理,锐角三角函数及弧长公式是解题关键,注意弧长公式中的角度指的是圆心角而不是圆周角.6、D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程有两个不相同的实数根,∴解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.7、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.8、A【详解】解:的直径为10,半径为5,当时,最小,根据勾股定理可得,与重合时,最大,此时,所以线段的的长的取值范围为,故选A.【点睛】本题考查垂径定理,掌握定理内容正确计算是本题的解题关键.9、C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解:A.y=-3x2-1中,﹣3<0,二次函数图象的开口向下,故A不符合题意;B.y=-x2+1中,-<0,二次函数图象的开口向下,故B不符合题意;C.y=x2+3中,>0,二次函数图象的开口向上,故C符合题意;D.y=-x2-5中,-1<0,二次函数图象的开口向下,故D不符合题意;故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.10、B【分析】先求出抛物线的顶点坐标,再根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标即可.【详解】抛物线的顶点坐标为(0,−1),∵向右平移个单位,再向下平移个单位,∴平移后的抛物线的顶点坐标为(2,−4).故选B.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(每小题3分,共24分)11、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.12、1【分析】直接利用关于原点对称点的性质得出3a+b=﹣1,进而得出答案.【详解】解:∵点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),∴,故3a+b=﹣1,则(3a+b)2020=1.故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号关系是解题关键.13、-1.【分析】设出点P的坐标,阴影部分面积等于点P的横纵坐标的积的绝对值,把相关数值代入即可.【详解】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=的图象上,∴k=xy,∴|xy|=1,∵点P在第二象限,∴k=﹣1.故答案是:﹣1.【点睛】此题考查的是已知反比例函数与矩形的面积关系,掌握反比例函数图象上一点作x轴、y轴的垂线与坐标轴围成的矩形的面积与反比例函数的比例系数的关系是解决此题的关键.14、【解析】∵点P的坐标为(3,4),∴OP=,∴.故答案为:.15、6【分析】根据是一元二次方程的一个根可得m2-3m=2,把变形后,把m2-3m=2代入即可得答案.【详解】∵是一元二次方程的一个根,∴m2-3m=2,∴=2(m2-3m)+2=2×2+2=6,故答案为:6【点睛】本题考查一元二次方程的解的定义,熟练掌握定义并正确变形是解题关键.16、且k≠1【详解】解:∵关于x的一元二次方程有两个不相等的实数根,∴解得:﹣≤k<且k≠1故答案为﹣≤k<且k≠1.点睛:本题考查了根的判别式、一元二次方程的定义以及二次根式有意义的条件,根据一元二次方程的定义、二次根式下非负以及根的判别式列出关于k的一元一次不等式组是解题的关键.17、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.18、1【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:﹣(﹣π)0+()﹣1=2﹣1+2=1.故答案为:1.【点睛】此题考查的是实数的混合运算,掌握立方根的定义、零指数幂的性质和负指数幂的性质是解决此题的关键.三、解答题(共66分)19、(1)①答案见解析;②答案见解析;(2)①C(6,2);D(2,0);②;③;④相切,理由见解析.【分析】(1)①按题目的要求作图即可②根据圆心到A、B、C距离相等即可得出D点位置;(2)①C(6,2),弦AB,BC的垂直平分线的交点得出D(2,0);

②OA,OD长已知,△OAD中勾股定理求出⊙D的半径=2;

③求出∠ADC的度数,得弧ADC的周长,求出圆锥的底面半径,再求圆锥的底面的面积;

④△CDE中根据勾股定理的逆定理得∠DCE=90°,直线EC与⊙D相切.【详解】(1)①②如图所示:(2)①故答案为:C(6,2);D(2,0);②⊙D的半径=;故答案为:;③解:AC=,CD=2,AD2+CD2=AC2,∴∠ADC=90°.扇形ADC的弧长=圆锥的底面的半径=,圆锥的底面的面积为π()2=;故答案为:;

(4)直线EC与⊙D相切.

证明:∵CD2+CE2=DE2=25,)∴∠DCE=90°.∴直线EC与⊙D相切.【点睛】本题综合考查了图形的性质和坐标的确定,是综合性较强,难度较大的综合题,圆的圆心D是关键.20、(1)甲设备万元每台,乙设备万元每台.(2)每吨燃料棒售价应为元.【分析】(1)设甲单价为万元,则乙单价为万元,再根据购买甲型智能设备花费万元,购买乙型智能设备花费万元,购买的两种设备数量相同列出分式方程并解答即可;(2)先求出每吨燃料棒成本为元,然后根据题意列出一元二次方程解答即可.【详解】解:设甲单价为万元,则乙单价为万元,则:解得经检验,是所列方程的根.答:甲设备万元每台,乙设备万元每台.设每吨燃料棒成本为元,则其物资成本为,则:,解得设每吨燃料棒在元基础上降价元,则解得.每吨燃料棒售价应为元.【点睛】本题考查分式方程和一元二次方程的应用,解题的关键在于弄懂题意、找到等量关系、并正确列出方程.21、(1)x1=1+,x2=1﹣;(2)(5,0),(-3,0),(0,-15)【分析】(1)根据一元二次方程的求根公式,即可求解;(2)令y=0,求出x的值,令x=0,求出y的值,进而即可得到答案.【详解】(1)x2﹣2x﹣1=0,∵a=1,b=﹣2,c=﹣1,∴△=b2﹣4ac=4+4=8>0,∴x==,∴x1=1+,x2=1﹣;(2)令y=0,则,即:,解得:,令x=0,则y=-15,∴二次函数的图象与坐标轴的交点坐标为:(5,0),(-3,0),(0,-15).【点睛】本题主要考查一元二次方程的解法和二次函数图象与坐标轴的交点坐标,掌握一元二次方程的求根公式以及求二次函数图象与坐标轴的交点坐标,是解题的关键.22、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.【解析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;

(2)S△DAC=2S△DCM,则,,即可求解;

(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:,将点的坐标代入上式并解得:,故抛物线的表达式为:…①,则点,将点的坐标代入一次函数表达式并解得:直线的表达式为:;(2)存在,理由:二次函数对称轴为:,则点,过点作轴的平行线交于点,设点,点,∵,则,解得:或5(舍去5),故点;(3)设点、点,,①当是平行四边形的一条边时,点向左平移4个单位向下平移16个单位得到,同理,点向左平移4个单位向下平移16个单位为,即为点,即:,,而,解得:或﹣4,故点或;②当是平行四边形的对角线时,由中点公式得:,,而,解得:,故点或;综上,点或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.23、(1);(2)当时,,当时,;(3)或.【分析】(1)由题意直接根据待定系数法,进行分析计算即可得出函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据待定系数法,可得BC的解析式,根据E点的纵坐标,可得E点的横坐标,根据两点间的距离,可得答案;(3)由题意根据PE与DE的关系,可得关于m的方程,根据解方程根据解方程,即可得出答案.【详解】解:(1)由题意得,解得∴这条抛物线对应的函数表达式是.(2)当时,.∴点的坐标是.设直线的函数关系式为.由题意得解得∴直线的函数关系式为.∵PD∥x轴,∴.∴.当时,如图①,.当时,如图②,.(3)当时,,.∵,∴.解得(不合题意,舍去),.当时,,.∵,∴.解得(不合题意,舍去),.综上所述,当时,或.【点睛】本题考查二次函数综合题,利用待定系数法求函数解析式;利用平行于x轴直线上点的纵坐标相等得出E点的纵坐标是解题关键;利用PE与DE的关系得出关于m的方程是解题的关键.24、(1)y=﹣x+1;(2)当1<x<4时,一次函数值大于反比例函数值;(3)【分析】(1)根据待定系数法求得即可;(2)由两个函数图象即可得出答案;(3)设P(m,),先求得△AOC的面积,即可求得△CPQ的面积,根据面积公式即可得到|1﹣m|•=1,解得即可.【详解】解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函数为y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函数为y=﹣x+1.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,),由一次函数y=﹣x+1可知C(1,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=1,∴|1﹣m|•=1,解得m=或m=﹣(舍去),∴P(,).【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数的解析式,熟练掌握待定系数法求函数解析式是解决问题的关键.25、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论