




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列命题是真命题的是()A.在同圆或等圆中,等弧所对的圆周角相等B.平分弦的直径垂直于弦C.在同圆或等圆中,等弦所对的圆周角相等D.三角形外心是三条角平分线的交点2.如图,现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为(
)A.2cm B.3cm C.4cm D.1cm3.如图,四边形内接于圆,过点作于点,若,,则的长度为()A. B.6 C. D.不能确定4.关于x的一元二次方程x2﹣(k+3)x+2k+2=0的根的情况,下面判断正确的是()A.有两个相等的实数根 B.有两个不相等的实数根 C.有两个实数根 D.无实数根5.下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路口,遇到红灯6.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)27.某校学生小明每天骑自行车上学时都要经过一个十字路口,设十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为().A. B. C. D.8.为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为,则可列方程()A. B. C.D.9.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形 B.正三角形 C.平行四边形 D.正方形10.对于反比例函数,下列说法错误的是()A.它的图像在第一、三象限B.它的函数值随的增大而减小C.点为图像上的任意一点,过点作轴于点.的面积是.D.若点和点在这个函数图像上,则11.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.7000(1+x2)=23170 B.7000+7000(1+x)+7000(1+x)2=23170C.7000(1+x)2=23170 D.7000+7000(1+x)+7000(1+x)2=231712.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.14.将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是____.15.有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.16.试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为________.17.对于实数a和b,定义一种新的运算“*”,,计算=______________________.若恰有三个不相等的实数根,记,则k的取值范围是_______________________.18.如图,量角器外沿上有A、B两点,它们的读数分别是70°、40°,则∠1的度数为___度.三、解答题(共78分)19.(8分)已知二次函数的图像经过点A(0,3),B(-1,0).(1)求该二次函数的解析式(2)在图中画出该函数的图象20.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.21.(8分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.22.(10分)(1)解方程:;(2)计算:.23.(10分)定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degreeofsurprise),记作.(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标,点坐标,惊喜四边形属于所学过的哪种特殊平行四边形?,为.(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.24.(10分)如图,△ABC中,AB=AC=2,∠BAC=120°,D为BC边上的点,将DA绕D点逆时针旋转120°得到DE.(1)如图1,若AD=DC,则BE的长为,BE2+CD2与AD2的数量关系为;(2)如图2,点D为BC边山任意一点,线段BE、CD、AD是否依然满足(1)中的关系,试证明;(3)M为线段BC上的点,BM=1,经过B、E、D三点的圆最小时,记D点为D1,当D点从D1处运动到M处时,E点经过的路径长为.25.(12分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,,,的仰角分别是30°和10°,,,且.(1)求点的铅直高度;(2)求两点的水平距离.(结果精确到,参考数据:)26.如图,己知是的直径,切于点,过点作于点,交于点,连接、.(1)求证:是的切线:(2)若,,求阴影部分面积.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据圆的性质,垂径定理,圆周角定理,三角形外心的定义,对照选项逐一分析即可.【详解】解:A.在同圆或等圆中,等弧所对的圆周角相等,是真命题;B.平分弦(弦不是直径)的直径垂直于弦,故原命题是假命题;C.在同圆或等圆中,等弦所对的圆周角相等,弦对着两个圆周角,故是假命题;D.三角形外心是三条边垂直平分线的交点,故是假命题;故选:A.【点睛】本题考查了圆的性质,垂径定理,圆周角定理,三角形外心的定义,掌握圆的性质和相关定理内容是解题的关键.2、A【解析】试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.解答:解:L=,解R=2cm.故选A.考点:弧长的计算.3、B【分析】首先根据圆内接四边形的性质求得∠A的度数,然后根据解直角三角形的方法即可求解.【详解】∵四边形ABCD内接于⊙O,,∴∠A=180−120=60,∵BH⊥AD,,∴BH=AHtan60°=,故选:B.【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法.4、C【分析】判断一元二次方程根的判别式的大小即可得解.【详解】由题意可可知:△=(﹣k﹣3)2﹣4(2k+2)=k2﹣2k+1=(k﹣1)2≥0,故选:C.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.5、B【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.【详解】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选B.【点睛】此题主要考查事件发生的概率,解题的关键是熟知必然事件的定义.6、C【解析】按照“左加右减,上加下减”的规律,从而选出答案.【详解】y=2x2向左平移3个单位得到的抛物线的解析式是y=2(x+3)2,故答案选C.【点睛】本题主要考查了抛物线的平移以及抛物线解析式的变换规律,解本题的要点在于熟知“左加右减,上加下减”的变化规律.7、D【分析】利用十字路口有红、黄、绿三色交通信号灯,遇到每种信号灯的概率之和为1,进而求出即可.【详解】解:∵十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,∴他遇到绿灯的概率为:1−−=.故选D.【点睛】此题主要考查了概率公式,得出遇到每种信号灯的概率之和为1是解题关键.8、D【解析】试题解析:设从2008年起我省森林覆盖率的年平均增长率为x,依题意得60.05%(1+x)2=1%.
即60.05(1+x)2=1.
故选D.9、D【分析】在一个平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.【详解】根据定义可得A、B为轴对称图形;C为中心对称图形;D既是轴对称图形,也是中心对称图形.故选:D.考点:轴对称图形与中心对称图形10、B【分析】对反比例函数化简得,所以k=>0,当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A、∵k=>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵k=,根据反比例函数中k的几何意义可得的面积为=,故本选项正确;D、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,x2=﹣<0,且x1>x2,∴,故本选项正确.故选:B.【点睛】题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.11、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.12、C【分析】画出树状图,由概率公式即可得出答案.【详解】解:由图得:红色扇形圆心角为120,白色扇形的圆心角为240°,∴红色扇形的面积:白色扇形的面积=,画出树状图如图,共有9个等可能的结果,让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的结果有4个,∴让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率为;故选:C.【点睛】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法步骤.二、填空题(每题4分,共24分)13、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【详解】解:连接OD,过点BH⊥x轴,①沿着EA翻折,如图1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四边形FENA是菱形,∴∠FAN=90°,∴四边形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿着AF翻折,如图2:∴AE=EF,∴B与F重合,∴∠BDE=45°,∵四边形ABDE是平行四边形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿着EF翻折,如图3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,过点F作FM⊥x轴,过点D作DN⊥x轴,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;综上所述:OE的长为6﹣或6或9﹣3,故答案为6﹣或6或9﹣3.【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.14、【分析】根据题意先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2),所以得到图象的解析式为.故答案为:.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.15、【详解】解:∵每个扇形大小相同,因此阴影面积与空白的面积相等,∴落在白色扇形部分的概率为:=.故答案为.考点:几何概率16、答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.【分析】由题意得,设,此时可令的数,然后再由与y轴的交点坐标为(0,2)求出k的值,进而可得到二次函数的解析式.【详解】解:设,将(0,2)代入,解得,故或y=x2﹣4x+2.故答案为:答案不唯一,如y=x2﹣4x+2,即y=(x﹣2)2﹣1.考点:1.二次函数的图象及其性质;2.开放思维.17、【分析】分当时,当时两种情况,分别代入新定义的运算算式即可求解;设y=,绘制其函数图象,根据图象确定m的取值范围,再求k的取值范围.【详解】当时,即时,当时,即时,;设y=,则y=其函数图象如图所示,抛物线顶点,根据图象可得:当时,恰有三个不相等的实数根,其中设,为与的交点,为与的交点,,,时,,故答案为:;【点睛】本题主要考查新定义问题,解题关键是将方程的解的问题转化为函数的交点问题.18、15【分析】圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.【详解】解:∵∠AOB=70°-40°=30°∴∠1=∠AOB=15°故答案为:15°.【点睛】本题考查圆周角定理.三、解答题(共78分)19、(1);(2)详见解析.【分析】(1)根据二次函数的图象经过点A(0,3),B(-1,0)可以求得该函数的解析式;(2)根据(1)中求得的函数解析式可以得到该函数经过的几个点,从而可以画出该函数的图象;【详解】解:(1)把A(0,3),B(-1,0)分别代入,得解得所以二次函数的解析式为:(2)由(1)得列表得:如图即为该函数图像:【点睛】本题考查求抛物线的解析式、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想.20、(1)等边三角形,见解析;(2)见解析;(3)【解析】(1)根据旋转的性质可以得出,即可证明出是等边三角形;(2)绕点A顺时针旋转得到,根据的旋转的性质得到,,相加即可得;(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的边角关系,从而求出PA+PB+PC的最小值.【详解】(1)等边三角形;绕A点顺时针旋转得到MA,,是等边三角形.(2)绕点A顺时针旋转得到,,由(1)可知,.(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小.连接BN,由旋转的性质可得:AB=AN,∠BAM=60°∴是等边三角形;,,是AB的垂直平分线,垂足为点Q,,,,即的最小值为.【点睛】本题为旋转综合题,掌握旋转的性质、等边三角形的判定及性质及理解小华的思路是关键.21、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【点睛】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.22、(1);(2)-3【分析】(1)先依次写出a、b、c的值,再求出△的值,最后代入公式计算即可;(2)分别计算特殊角的三角函数值和算术平方根,再依据有理数的混合运算计算即可.【详解】解:(1):∵∴,∴,∴,即(2)原式=,.【点睛】本题考查利用公式法解一元二次方程,特殊角的三角函数值的混合运算和算术平方根.(1)中熟记一元二次方程的求根公式是解题关键;(2)中熟记特殊角的三角函数值是解题关键.23、(1);;菱形;2;(2);(3),或,.【分析】(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.【详解】解:(1)在抛物线上,当y=0时,,解得,,,∵点在点右边,∴A点的坐标为,B点的坐标为;∴AB=4,∵∴顶点B的坐标为,由于BD关于x轴对称,∴D的坐标为,∴BD=8,通过抛物线的对称性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴惊喜四边形为菱形;;(2)由题意得:的顶点坐标,解得:,∴∴,(3)抛物线的顶点为,对称轴为直线:①即时,,得∴②即时,时,对应惊喜线上最高点的函数值,∴(舍去);∴③即时形成不了惊喜线,故不存在综上所述,,或,【点睛】本题主要考查了二次函数的综合问题,需要熟练掌握二次函数的基础内容:顶点坐标、对称轴以及各交点的坐标求法.24、(1)1;BE1+CD1=4AD1;(1)能满足(1)中的结论,见解析;(3)1【分析】(1)依据旋转性质可得:DE=DA=CD,∠BDE=∠ADB=60°,再证明:△BDE≌△BDA,利用勾股定理可得结论;(1)将△ACD绕点A顺时针旋转110°得到△ABD′,再证明:∠D′BE=∠D′AE=90°,利用勾股定理即可证明结论仍然成立;(3)从(1)中发现:∠CBE=30°,即:点D运动路径是线段;分别求出点D位于D1时和点D运动到M时,对应的BE长度即可得到结论.【详解】解:(1)如图1,∵AB=AC,∠BAC=110°,∴∠ABC=∠ACB=30°,∵AD=DC∴∠CAD=∠ACB=30°,∠ADB=∠CAD+∠ACB=60°,∴∠BAD=90°,由旋转得:DE=DA=CD,∠BDE=∠ADB=60°∴△BDE≌△BDA(SAS)∴∠BED=∠BAD=90°,BE=AB=∴BE1+CD1=BE1+DE1=BD1∵=cos∠ADB=cos60°=∴BD=1AD∴BE1+CD1=4AD1;故答案为:;BE1+CD1=4AD1;(1)能满足(1)中的结论.如图1,将△ACD绕点A顺时针旋转110°得到△ABD′,使AC与AB重合,∵∠DAD′=110°,∠BAD′=∠CAD,∠ABD′=∠ACB=30°,AD′=AD=DE,∠DAE=∠AED=30°,BD′=CD,∠AD′B=∠ADC∴∠D′AE=90°∵∠ADB+∠ADC=180°∴∠ADB+∠AD′B=180°∴A、D、B、D′四点共圆,同理可证:A、B、E、D四点共圆,A、E、B、D′四点共圆;∴∠D′BE=90°∴BE1+BD′1=D′E1∵在△AD′E中,∠AED′=30°,∠EAD′=90°∴D′E=1AD′=1AD∴BE1+BD′1=(1AD)1=4AD1∴BE1+CD1=4AD1.(3)由(1)知:经过B、E、D三点的圆必定经过D′、A,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业的租赁合同范本(合同版本)
- 2025年个人住房公积金购房借款合同示范文本
- 2025-2030美容霜项目可行性研究报告
- 2025林产品收购合同(合同范本)
- 2025-2030纺织印染助剂市场发展分析及行业投资战略研究报告
- 2025-2030红葡萄酒行业发展分析及投资价值研究咨询报告
- 2025-2030糖果行业市场发展分析及前景趋势与投资研究报告
- 2025-2030粉末涂层卫生间隔断行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030砂轮片行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2025-2030电子考场系统行业发展分析及投资战略研究报告
- 浙江金华金义新区发展集团有限公司招聘笔试题库2024
- 高级烟草制品购销员(三级)职业资格鉴定理论考试题库-下(多选、判断题)
- 游戏测试员工作总结
- DL∕T 5046-2018 发电厂废水治理设计规范
- DL∕T 1084-2021 风力发电场噪声限值及测量方法
- 知识点 4.4 206系列转向架(一)(二)课件讲解
- 企业并购财务风险分析及控制
- 铝模工程劳务承包合同协议书
- 2024年高考数学1卷对高中数学教学的启发
- 2024年广西中考语文试卷真题(含官方答案及逐题解析)
- 2024年中国邮政集团有限公司校园招聘考试试题参考答案
评论
0/150
提交评论