第三十四章 DNA的损伤、修复和突变_第1页
第三十四章 DNA的损伤、修复和突变_第2页
第三十四章 DNA的损伤、修复和突变_第3页
第三十四章 DNA的损伤、修复和突变_第4页
第三十四章 DNA的损伤、修复和突变_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三十四章DNA的损伤、修复和突变提纲DNA的损伤DNA的修复直接修复切除修复双链断裂修复损伤跨越DNA的突变突变的类型与后果突变的原因回复突变与突变的校正突变原与致癌物之间的关系及致癌物的检测哪些因素能影响到DNA的完整性?细胞内源的因素环境因素

-例如化学试剂、污染物和UV线细胞内源因素复制错误例如四种dNTP量的不平衡导致错配DNA本身的不稳定碱基的自发脱氨基DNA的脱嘌呤/脱嘧啶导致碱基脱落活性氧的作用DNA,蛋白质和脂质的氧化DNA分子上的自发脱嘌呤作用和自发脱氨基作用环境(外源)因素化学试剂

(1)

天然化合物黄曲霉素

(2)

人造化合物苯并芘-香烟顺铂-化疗药物物理因素

(1)UV

(2)

离子辐射

γ-射线x-射线DNA损伤的因素和损伤的主要类型损伤类型实例/原因碱基丢失自发脱碱基(热、酸),脱嘌呤>脱嘧啶,104嘌呤脱落/天/细胞(恒温动物)碱基修饰形成碱基加合物,例如,8-羟基脱氧鸟嘌呤(离子辐射或活性氧),6-烷基鸟嘌呤(烷基化试剂)碱基交联嘧啶二聚体和6-4光产物(UV)碱基转换C→U,A→I(自发脱氨基),100碱基脱氨基/天/细胞碱基错配GT(4种dNTP浓度不平衡、碱基的互变异构或碱基之间的差别不足)DNA链断裂因磷酸二酯键被破坏引起单链断裂或双链断裂(离子辐射或特殊的化学试剂),因脱氧核糖环3号位发生断裂引起的DNA链断裂(博来霉素)DNA链间交联互补双链之间产生交联(双功能试剂的作用)DNA与蛋白质的交联UVDNA损伤的因素和损伤的主要类型损伤类型实例/原因碱基丢失自发脱碱基(热、酸),脱嘌呤>脱嘧啶,104嘌呤脱落/天/细胞(恒温动物)碱基修饰形成碱基加合物,例如,8-羟基脱氧鸟嘌呤(离子辐射或活性氧),6-烷基鸟嘌呤(烷基化试剂)碱基交联嘧啶二聚体和6-4光产物(UV)碱基转换C→U,A→I(自发脱氨基),100碱基脱氨基/天/细胞碱基错配GT(4种dNTP浓度不平衡、碱基的互变异构或碱基之间的差别不足)DNA链断裂因磷酸二酯键被破坏引起单链断裂或双链断裂(离子辐射或特殊的化学试剂),因脱氧核糖环3号位发生断裂引起的DNA链断裂(博来霉素)DNA链间交联互补双链之间产生交联(双功能试剂的作用)DNA与蛋白质的交联UV活性氧的碱基修饰作用

鸟嘌呤的甲基化导致碱基错配

DNA损伤的因素和损伤的主要类型损伤类型实例/原因碱基丢失自发脱碱基(热、酸),脱嘌呤>脱嘧啶,104嘌呤脱落/天/细胞(恒温动物)碱基修饰形成碱基加合物,例如,8-羟基脱氧鸟嘌呤(离子辐射或活性氧),6-烷基鸟嘌呤(烷基化试剂)碱基交联嘧啶二聚体和6-4光产物(UV)碱基转换C→U,A→I(自发脱氨基),100碱基脱氨基/天/细胞碱基错配GT(4种dNTP浓度不平衡、碱基的互变异构或碱基之间的差别不足)DNA链断裂因磷酸二酯键被破坏引起单链断裂或双链断裂(离子辐射或特殊的化学试剂),因脱氧核糖环3号位发生断裂引起的DNA链断裂(博来霉素)DNA链间交联互补双链之间产生交联(双功能试剂的作用)DNA与蛋白质的交联UV紫外线引起的碱基损伤

DNA损伤的因素和损伤的主要类型损伤类型实例/原因碱基丢失自发脱碱基(热、酸),脱嘌呤>脱嘧啶,104嘌呤脱落/天/细胞(恒温动物)碱基修饰形成碱基加合物,例如,8-羟基脱氧鸟嘌呤(离子辐射或活性氧),6-烷基鸟嘌呤(烷基化试剂)碱基交联嘧啶二聚体和6-4光产物(UV)碱基转换C→U,A→I(自发脱氨基),100碱基脱氨基/天/细胞碱基错配GT(4种dNTP浓度不平衡、碱基的互变异构或碱基之间的差别不足)DNA链断裂因磷酸二酯键被破坏引起单链断裂或双链断裂(离子辐射或特殊的化学试剂),因脱氧核糖环3号位发生断裂引起的DNA链断裂(博来霉素)DNA链间交联互补双链之间产生交联(双功能试剂的作用)DNA与蛋白质的交联UV离子辐射引起的DNA链断裂

DNA修复DNA是唯一一种在发生损伤以后可以被完全修复的分子,而其他生物大分子在受到损伤以后要么被降解,要么被取代。当然,并不是发生在DNA分子上的所有损伤都能修复。如果受到的损伤不能及时被修复,可导致细胞的癌变和早衰。细胞之所以在DNA受到损伤以后,选择的处理方法是尽量将其修复而不是将其降解,这一是因为作为遗传物质的DNA分子在细胞内只有一个拷贝,如果将其水解的话,细胞也就失去了存在的根基;二是DNA的互补双螺旋结构使得修复一个受损伤的DNA分子变得很容易。DNA修复机制直接修复:嘧啶二聚体直接修复、烷基化直接修复切除修复:碱基切除修复、核苷酸切除修复、错配修复双链断裂修复:损伤跨越:重组跨越、跨越合成直接修复嘧啶二聚体的直接修复——由DNA光裂合酶催化。此酶直接识别和结合嘧啶二聚体。然后,利用辅基捕捉到的光能,将嘧啶二聚体打开,最后再与DNA解离。但是胎盘类哺乳动物却没有这种酶。烷基化碱基的直接修复——由特定的烷基转移酶催化DNA链断裂的直接修复——由DNA连接酶催化。光裂合酶的三维结构嘧啶二聚体的直接修复

直接修复嘧啶二聚体的直接修复——由DNA光裂合酶催化。此酶直接识别和结合嘧啶二聚体。然后,利用辅基捕捉到的光能,将嘧啶二聚体打开,最后再与DNA解离。但是胎盘类哺乳动物却没有这种酶。烷基化碱基的直接修复——由特定的烷基转移酶催化DNA链断裂的直接修复——由DNA连接酶催化。烷基化碱基的直接修复切除修复切除修复先切除损伤的碱基或核苷酸,然后,重新合成正常的核苷酸,最后,再经连接酶重新连接,将原来的切口缝合。整个切除修复过程包括识别、切除、重新合成和重新连接。切除修复又分为碱基切除修复(BER)和核苷酸切除修复(NER),两者的主要差别在于识别损伤的机制上,前者是直接识别具体的受损伤的碱基,而后者并不识别具体的损伤,而是识别损伤对DNA双螺旋结构造成的扭曲。错配修复(MMR)碱基切除修复DNA糖苷酶切除受损伤的碱基短修补——是主要途径,约占80%~90%,只需合成属于AP位点的1个正常的核苷酸长修补——是次要途径,约占10%~20%,为短修补途径的备用途径,要合成1小段寡聚核苷酸尿嘧啶的切除修复核苷酸切除修复NER最初的切点是损伤部位附近的3′,5′-磷酸二酯键,主要用来修复因UV、丝裂霉素C和顺铂等因素造成的比较大的损伤,如嘧啶二聚体、体积较大的碱基加合物以及链间交联等导致DNA结构发生扭曲并影响到DNA复制的损伤,此外,约20%碱基的氧化性损伤也由它修复。在修复过程中,损伤以寡聚核苷酸的形式被切除。由于NER识别损伤的机制并非针对损伤本身,而是损伤对DNA双螺旋结构造成的扭曲,因此,NER能够使用相同的机制和几乎同一套修复蛋白去修复一系列性质并不相同的损伤。NER在所有的生物具有相同的步骤:识别损伤—由特殊的蛋白质完成,并由此引发一系列的蛋白质与受损伤DNA的有序结合;切除损伤—特殊的内切酶在损伤部位的两侧切开DNA链,随后两个切口之间带有损伤的DNA片段被去除;修复合成—DNA聚合酶以另外一条链为模板,合成已被切除的序列;缝合切口—由DNA连接酶催化。损伤跨越

重组跨越使用同源重组的方法将DNA模板进行交换以避免损伤对复制的抑制,从而使复制能够继续下

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论