版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是()A.6个 B.7个 C.8个 D.9个2.如图,在中,点C为弧AB的中点,若(为锐角),则()A. B. C. D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4.一元二次方程x2﹣4x+5=0的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根5.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?()A.方案一 B.方案二C.两种方案一样 D.工龄短的选方案一,工龄长的选方案二6.如图,直线与反比例函数的图象相交于、两点,过、两点分别作轴的垂线,垂足分别为点、,连接、,则四边形的面积为()A.4 B.8 C.12 D.247.边长分别为6,8,10的三角形的内切圆半径与外接圆半径的比为()A.1:5 B.4:5 C.2:10 D.2:58.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是()A. B. C. D.9.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.610.下列图案中,是中心对称图形的是()A. B.
C. D.11.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇12.已知菱形的周长为40cm,两对角线长度比为3:4,则对角线长分别为()A.12cm.16cm B.6cm,8cm C.3cm,4cm D.24cm,32cm二、填空题(每题4分,共24分)13.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.14.已知圆O的直径为4,点M到圆心O的距离为3,则点M与⊙O的位置关系是_____.15.计算:________.16.如图,在矩形中,在上,在矩形的内部作正方形.当,时,若直线将矩形的面积分成两部分,则的长为________.17.已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD=_____度.18.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)三、解答题(共78分)19.(8分)某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?20.(8分)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.21.(8分)如图,抛物线与轴交于两点,与轴交于点,且.直线与抛物线交于两点,与轴交于点,点是抛物线的顶点,设直线上方的抛物线上的动点的横坐标为.(1)求该抛物线的解析式及顶点的坐标.(2)连接,直接写出线段与线段的数量关系和位置关系.(3)连接,当为何值时?(4)在直线上是否存在一点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.22.(10分)2019年某市猪肉售价逐月上涨,每千克猪肉的售价(元)与月份(,且为整数)之间满足一次函数关系:,每千克猪肉的成本(元)与月份(,且为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为元,月份成本为元.(1)求与之间的函数关系式;(2)设销售每千克猪肉所获得的利润为(元),求与之间的函数关系式,哪个月份销售每千克猪肉所获得的利润最大?最大利润是多少元?23.(10分)箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.24.(10分)“十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?25.(12分)如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.26.如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.
参考答案一、选择题(每题4分,共48分)1、C【解析】观察图形,两个断开的水平菱形之间最小有2个竖的菱形,之后在此基础上每增加一个也可完整,即可以是2、5、8、11……故选C.点睛:探索规律的题型最关键的是找准规律.2、B【分析】连接BD,如图,由于点C为弧AB的中点,根据圆周角定理得到∠BDC=∠ADC=α,然后根据圆内接四边形的对角互补可用α表示出∠APB.【详解】解:连接BD,如图,∵点C为弧AB的中点,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故选:B.【点睛】本题考查了弧、弦、圆心角的关系,以及圆内接四边形的性质,熟练掌握圆的性质定理是解答本题的关键.3、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是轴对称图形,也是中心对称图形,故本选项符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4、A【解析】首先求出一元二次方程根的判别式,然后结合选项进行判断即可.【详解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程无实数根,故选A.【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5、B【分析】根据题意分别计算出方案一和方案二的第n年的年收入,进行大小比较,从而得出选项.【详解】解:第n年:方案一:12个月后,在年薪20000元的基础上每年提高500元,第一年:20000元第二年:20500元第三年:21000元第n年:20000+500(n-1)=500n+19500元,方案二:6个月后,在半年薪10000元的基础上每半年提高125元,第一年:20125元第二年:20375元第三年:20625元第n年:10000+250(n-1)+10000+250(n-1)+125=500n+19625元,由此可以看出方案二年收入永远比方案一,故选方案二更划算;故选B.【点睛】本题考查方案选择,解题关键是准确理解题意根据题意列式比较方案间的优劣进行分析.6、C【分析】根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=3,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积.【详解】解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=3,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=3,∴四边形ABCD的面积为=S△AOC+S△ODA+S△ODB+S△OBC=4×3=1.故选C.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.7、D【分析】由面积法求内切圆半径,通过直角三角形外接圆半径为斜边一半可求外接圆半径,则问题可求.【详解】解:∵62+82=102,∴此三角形为直角三角形,∵直角三角形外心在斜边中点上,∴外接圆半径为5,设该三角形内接圆半径为r,∴由面积法×6×8=×(6+8+10)r,解得r=2,三角形的内切圆半径与外接圆半径的比为2:5,故选D.【点睛】本题主要考查了直角三角形内切圆和外接圆半径的有关性质和计算方法,解决本题的关键是要熟练掌握面积计算方法.8、A【解析】观察所给的几何体,根据三视图的定义即可解答.【详解】左视图有2列,每列小正方形数目分别为2,1.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,
∴,
解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10、D【分析】根据中心对称图形的定义逐一进行分析判断即可.【详解】A、不是中心对称图形,故不符合题意;B、不是中心对称图形,故不符合题意;C、不是中心对称图形,故不符合题意;D、是中心对称图形,故符合题意,故选D.【点睛】本题考查了中心对称图形的识别,熟练掌握中心对称图形的概念是解题的关键.11、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A.考点:1、菱形的性质;2、勾股定理.二、填空题(每题4分,共24分)13、【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a(x-h)2+k,∵C为顶点,∴y=a(x-6)2+4,把A(0,0)代入上式,36a+4=0,解得:,∴;故答案为:.【点睛】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.14、在圆外【分析】根据由⊙O的直径为4,得到其半径为2,而点M到圆心O的距离为3,得到点M到圆心O的距离大于圆的半径,根据点与圆的位置关系即可判断点M与⊙O的位置关系.【详解】解:∵⊙O的直径为4,∴⊙O的半径为2,∵点M到圆心O的距离为3,∴∴点M与⊙O的位置关系是在圆外.故答案为:在圆外.【点睛】本题考查的是点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d与圆半径大小关系完成判定.15、【分析】根据特殊角的三角函数值直接书写即可.【详解】故答案为:.【点睛】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.16、或【分析】分二种情形分别求解:①如图1中,延长交于,当时,直线将矩形的面积分成两部分.②如图2中,延长交于交的延长线于,当时,直线将矩形的面积分成两部分.【详解】解:如图1中,设直线交于,当时,直线将矩形的面积分成两部分.,,,.如图2中,设直线长交于交的延长线于,当时,直线将矩形的面积分成两部分,易证∴,,,,.综上所述,满足条件的的值为或.故答案为:或.【点睛】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.17、1【解析】如图,先求出∠DAP=∠CBP=30°,由AP=AD=BP=BC,就可以求出∠PDC=∠PCD=15°,进而得出∠CPD的度数.【详解】解:如图,∵四边形ABCD是正方形,∴AD=AB=BC,∠DAB=∠ABC=90°,∵△ABP是等边三角形,∴AP=BP=AB,∠PAB=∠PBA=60°,∴AP=AD=BP=BC,∠DAP=∠CBP=30°.∴∠BCP=∠BPC=∠APD=∠ADP=75°,∴∠PDC=∠PCD=15°,∴∠CPD=180°﹣∠PDC﹣∠PCD=180°﹣15°﹣15°=1°.故答案为1.【点睛】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键.18、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(共78分)19、(1)4800元;(2)降价60元.【解析】试题分析:(1)先求出降价前每件商品的利润,乘以每月销售的数量就可以得出每月的总利润;(2)设每件商品应降价x元,由销售问题的数量关系“每件商品的利润×商品的销售数量=总利润”列出方程,解方程即可解决问题.试题解析:(1)由题意得60×(360-280)=4800(元).即降价前商场每月销售该商品的利润是4800元;(2)设每件商品应降价x元,由题意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于减少库存,则x=60.即要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.点睛:本题考查了列一元二次方程解实际问题的销售问题,解答时根据销售问题的数量关系建立方程是关键.20、(1)见解析;(2)【分析】(1)连接,根据三角形的内角和得到,根据等腰三角形的性质得到,得到,于是得到结论;(2)根据已知条件得到,根据勾股定理即可得到结论.【详解】(1)证明:连接,∵,∴,∴,∵,∴,∵,∴,∴,∴,∴∵点在上,∴是的切线(2)解:∵,∴,∴,【点睛】本题主要考查切线的判定以及圆和勾股定理,根据题意准确作出辅助线是求解本题的关键.21、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;(2)CQ==AE,直线AQ和AE的倾斜角均为45°,即可求解;(3)根据题意将△APD的面积和△DAB的面积表示出来,令其相等,即可解出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三种情况,分别求解即可.【详解】解:(1)直线与抛物线交于点,则点、点.∵,∴点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为,函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQ∥AE,理由是:,,∴CQ=AE,直线CQ表达式中的k==1,与直线AE表达式中k相等,故AE∥CQ,
故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点作轴的平行线,交于点,设点,则点.解得或1.(4)存在,理由:设点,点,,而点,①当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,,,,,,在△PGQ和△HMP中,,,,,即:,,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;②当时,如图3,,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:△MQP和△NQH都是等腰直角三角形,MQ=MP,∵MQ=1-m,MP=4-n,∴n=3+m,代入,解得:或1(舍去),故点P;③当时,如图4所示,点在下方,与题意不符,故舍去.如图5,P在y轴右侧,同理可得△PHK≌△HQJ,可得QJ=HK,∵QJ=t-1,HK=t+1-n,∴t-1=t+1-n,∴n=2,∴,解得:m=(舍去)或,∴点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏.22、(1);(2)w=,月份利润最大,最大利润为【分析】(1)由题意可知当x=3时,最小为9,即用顶点式设二次函数解析式为,然后将代入即可求解;(2)由利润=售价-成本可得,根据二次函数的性质即可得到结论.【详解】解:(1)由题意可得,抛物线得顶点坐标为,且经过.设与之间得函数关系式为:,将代入得,解得:(2)由题意得:当时,取最大值月份利润最大,最大利润为.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数求函数解析式、由利润=售价-成本得出利润的函数解析式、利用二次函数的图象与性质是解题的关键.23、解:(1)见解析(2)【分析】(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图可得所有等可能结果;(2)从所有等可能结果中找到抽出的2瓶牛奶中恰好抽到过期牛奶的结果数,再根据概率公式计算可得.【详解】解:(1)设这四瓶牛奶分别记为A、B、C、D,其中过期牛奶为A,画树状图如图所示,由图可知,共有12种等可能结果;(2)由树状图知,所抽取的12种等可能结果中,抽出的2瓶牛奶中恰好抽到过期牛奶的有6种结果,所以抽出的2瓶牛奶中恰好抽到过期牛奶的概率为.【点睛】此题考查了列表法与树状图法,以及概率公式,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)112;(2)22【分析】(1)利用单价=原价﹣2×超出20人的人数,可求出22人去旅游时门票的单价,再利用总价=单价×数量即可求出结论;(2)设该单位这次共有x名员工去江南长城旅游区旅游,利用数量=总价÷单价结合人数为整数可得出20<x≤27,由总价=单价×数量,即可得出关于x的一元二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 办公楼安全保卫管理规定(4篇)
- 瑜伽体验课程设计教案
- 直线式灌装机课程设计
- 2024年职业素养培训考试题库(附答案)
- 自动线plc课程设计
- 线上教学课程设计大赛
- 餐饮行业后勤管理工作总结
- 室内设计师工作总结
- 餐饮行业的卫生管理要点
- 客户服务行业美工工作总结
- 讲师与教育平台合作合同
- 2025届江苏省丹阳市丹阳高级中学高一数学第一学期期末统考试题含解析
- 汽车保险与理赔课件 3.4认识新能源汽车车上人员责任保险
- GB/T 33629-2024风能发电系统雷电防护
- 建筑工程施工现场安全检查手册
- 小学英语语法练习模拟试卷
- 高标准农田建设项目安全文明施工方案
- 2024-2025学年一年级上册数学北师大版4.6《挖红薯》(教学设计)
- 糖尿病患者体重管理专家共识(2024年版)解读
- 中国融通集团招聘笔试题库2024
- 2023年国家卫生健康委项目资金监管服务中心招聘考试试题及答案
评论
0/150
提交评论