下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时三角函数的积化和差与和差化积学习目标核心素养1.能根据公式Sα±β和Cα±β进行恒等变换,推导出积化和差与和差化积公式.(难点)2.了解三角变换在解数学问题时所起的作用,进一步体会三角变换的特点,提高推理、运算能力.(重点)1.通过三角函数的积化和差与和差化积公式的推导,培养学生逻辑推理核心素养.2.借助积化和差与和差化积公式的应用,提升学生的数学运算及逻辑推理的核心素养.新知探究1.积化和差公式cosαcosβ=eq\f(1,2)[cos(α+β)+cos(α-β)];sinαsinβ=-eq\f(1,2)[cos(α+β)-cos(α-β)];sinαcosβ=eq\f(1,2)[sin(α+β)+sin(α-β)];cosαsinβ=eq\f(1,2)[sin(α+β)-sin(α-β)].2.和差化积公式设α+β=x,α-β=y,则α=eq\f(x+y,2),β=eq\f(x-y,2).这样,上面的四个式子可以写成,sinx+siny=2sineq\f(x+y,2)coseq\f(x-y,2);sinx-siny=2coseq\f(x+y,2)sineq\f(x-y,2);cosx+cosy=2coseq\f(x+y,2)coseq\f(x-y,2);cosx-cosy=-2sineq\f(x+y,2)sineq\f(x-y,2).思考:和差化积公式的适用条件是什么?[提示]只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果是一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式.小试身手1.计算sin105°cos75°的值是()A.eq\f(1,2)B.eq\f(1,4)C.-eq\f(1,4)D.-eq\f(1,2)B[sin105°cos75°=eq\f(1,2)(sin180°+sin30°)=eq\f(1,4).]20°·cos70°+sin10°·sin50°的值为()A.-eq\f(1,4) B.eq\f(1,4)C.eq\f(1,2) D.-eq\f(1,2)B[sin20°·cos70°+sin10°·sin50°=eq\f(1,2)eq\b\lc\[\rc\](\a\vs4\al\co1(sin\b\lc\(\rc\)(\a\vs4\al\co1(20°+70°))+sin\b\lc\(\rc\)(\a\vs4\al\co1(20°-70°))))+eq\f(1,2)[cos(10°-50°)-coseq\b\lc\(\rc\)(\a\vs4\al\co1(10°+50°))]=eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(sin90°-sin50°))+eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(cos40°-cos60°))=eq\f(1,4)-eq\f(1,2)sin50°+eq\f(1,2)cos40°=eq\f(1,4)-eq\f(1,2)sin50°+eq\f(1,2)sin50°=eq\f(1,4).故选B.]3.下列等式正确的是()A.sinx+siny=2sineq\f(x+y,2)sineq\f(x-y,2)B.sinx-siny=2coseq\f(x+y,2)coseq\f(x-y,2)C.cosx+cosy=2coseq\f(x+y,2)coseq\f(x-y,2)D.cosx-cosy=2sineq\f(x+y,2)sineq\f(x-y,2)C[由和差化积公式知C正确.]【例1】(1)求值:sin20°cos70°+sin10°sin50°.(2)求值:sin20°sin40°sin60°sin80°.[思路探究]利用积化和差公式化简求值,注意角的变换,尽量出现特殊角.[解](1)sin20°cos70°+sin10°sin50°=eq\f(1,2)(sin90°-sin50°)-eq\f(1,2)(cos60°-cos40°)=eq\f(1,4)-eq\f(1,2)sin50°+eq\f(1,2)cos40°=eq\f(1,4)-eq\f(1,2)sin50°+eq\f(1,2)sin50°=eq\f(1,4).(2)原式=cos10°cos30°cos50°cos70°=eq\f(\r(3),2)cos10°cos50°cos70°=eq\f(\r(3),2)eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2)cos60°+cos40°·cos70°))=eq\f(\r(3),8)cos70°+eq\f(\r(3),4)cos40°cos70°=eq\f(\r(3),8)cos70°+eq\f(\r(3),8)(cos110°+cos30°)=eq\f(\r(3),8)cos70°+eq\f(\r(3),8)cos110°+eq\f(3,16)=eq\f(3,16).积化和差公式的功能与关键1功能:①把三角函数的一种形式积的形式转化为另一种形式和差的形式.②将角度化为特殊角求值或化简,将函数式变形以研究其性质.2关键是正确地选用公式,以便把非特殊角的三角函数相约或相消,从而化为特殊角的三角函数.【例2】已知cosα-cosβ=eq\f(1,2),sinα-sinβ=-eq\f(1,3),求sin(α+β)的值.[思路探究]利用和差化积公式,对所求式子进行变形,利用所给条件求解.[解]∵cosα-cosβ=eq\f(1,2),∴-2sineq\f(α+β,2)sineq\f(α-β,2)=eq\f(1,2). ①又∵sinα-sinβ=-eq\f(1,3),∴2coseq\f(α+β,2)sineq\f(α-β,2)=-eq\f(1,3). ②∵sineq\f(α-β,2)≠0,∴由①②,得-taneq\f(α+β,2)=-eq\f(3,2),即taneq\f(α+β,2)=eq\f(3,2).∴sin(α+β)=eq\f(2sin\f(α+β,2)cos\f(α+β,2),sin2\f(α+β,2)+cos2\f(α+β,2))=eq\f(2tan\f(α+β,2),1+tan2\f(α+β,2))=eq\f(2×\f(3,2),1+\f(9,4))=eq\f(12,13).和差化积公式应用时的注意事项1在应用和差化积公式时,必须是一次同名三角函数方可施行,若是异名,必须用诱导公式化为同名,若是高次函数,必须用降幂公式降为一次.2根据实际问题选用公式时,应从以下几个方面考虑:①运用公式之后,能否出现特殊角;②运用公式之后,能否提取公因式,能否约分,能否合并或消项.3为了能够把三角函数式化为积的形式,有时需要把某些常数当作三角函数值才能应用公式,如eq\f(1,2)-cosα=coseq\f(π,3)-cosα.【例3】在△ABC中,求证:sinA+sinB-sinC=4sineq\f(A,2)sineq\f(B,2)coseq\f(C,2).[思路探究]利用和差化积进行转化,转化时要注意A+B+C=π.[解]左边=sin(B+C)+2sineq\f(B-C,2)·coseq\f(B+C,2)=2sineq\f(B+C,2)coseq\f(B+C,2)+2sineq\f(B-C,2)coseq\f(B+C,2)=2coseq\f(B+C,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(sin\f(B+C,2)+sin\f(B-C,2)))=4sineq\f(A,2)sineq\f(B,2)coseq\f(C,2)=右边,∴原等式成立.证明三角恒等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度数据分析和处理合同
- 2024年度文化艺术节组织服务合同
- 2024年度水果连锁加盟店苹果采购合同(零售业)
- 2024年度广告投放合作保密合同
- 连体服市场发展现状调查及供需格局分析预测报告
- 2024年度建筑工地塔吊司机劳动合同
- 2024年度特许经营合同:某连锁品牌授权某地区投资者开设加盟店
- 补内胎用全套工具市场发展预测和趋势分析
- 2024年度建筑工程施工合同标的物为一个住宅小区的建设
- 2024年度互联网信息服务合同:互联网企业与用户之间的信息服务协议
- 口腔技工职业分析
- 无人机器人配送项目计划书
- 光电式传感器的应用课件
- 新能源电动汽车整车性能测试与分析
- 小红书平台调研分析报告
- 不动产测绘培训课件
- 纸质文物保存修复技术研究
- 学无止境终身学习的重要性
- 粤教版小学科学六年级上册单元测试卷附答案(全册)
- 物业工程部培训资料全课件
- 12《我们小点儿声》(教案)部编版道德与法治二年级上册
评论
0/150
提交评论