![2023年九年级数学中考一轮复习《圆》解答题专题训练(含解析)_第1页](http://file4.renrendoc.com/view/96be17f218166032d6175473d84ae70a/96be17f218166032d6175473d84ae70a1.gif)
![2023年九年级数学中考一轮复习《圆》解答题专题训练(含解析)_第2页](http://file4.renrendoc.com/view/96be17f218166032d6175473d84ae70a/96be17f218166032d6175473d84ae70a2.gif)
![2023年九年级数学中考一轮复习《圆》解答题专题训练(含解析)_第3页](http://file4.renrendoc.com/view/96be17f218166032d6175473d84ae70a/96be17f218166032d6175473d84ae70a3.gif)
![2023年九年级数学中考一轮复习《圆》解答题专题训练(含解析)_第4页](http://file4.renrendoc.com/view/96be17f218166032d6175473d84ae70a/96be17f218166032d6175473d84ae70a4.gif)
![2023年九年级数学中考一轮复习《圆》解答题专题训练(含解析)_第5页](http://file4.renrendoc.com/view/96be17f218166032d6175473d84ae70a/96be17f218166032d6175473d84ae70a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九年级数学中考一轮复习《圆》解答题专题训练(附答案)1.如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为,阴影部分的面积S=;(2)求BC的长.2.如图,AO是△ABC的中线,⊙O与AB边相切于点D.(1)要使⊙O与AC边也相切,应增加条件(任写一个);(2)增加条件后,请你说明⊙O与AC边相切的理由.3.如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,画出图形,探究线段AD、BD、CD之间的数量关系并证明.4.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC的度数;(2)⊙O的半径;(3)AB+CD的值.5.如图,在△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,⊙O的切线DE交AC于点E.(1)求证:E是AC中点;(2)若AB=10,BC=6,连接CD,OE,交点为F,求OF的长.6.如图,点D在⊙O上,过点D的切线交直径AB延长线于点P,DC⊥AB于点C.(1)求证:DB平分∠PDC;(2)若DC=6,tan∠P=,求BC的长.7.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:∠CBF=∠CAB;(2)连接BD,AE交于点H,若AB=5,tan∠CBF=,求BH的值.8.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.9.如图,AB是⊙O的直径,且点C为⊙O上的一点,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)证明:CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.10.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.11.如图,在Rt△ACB中,∠C=90°,D是AB上一点,以BD为直径的⊙O切AC于点E,交BC于点F,连接DF.(1)求证:DF=2CE;(2)若BC=3,sinB=,求线段BF的长.12.如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.(I)求证:DE为⊙O的切线;(II)若⊙O的半径为5,∠BAC=60°,求DE的长.13.如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠D=30度.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.14.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F.(1)求证:EF⊥AB;(2)若∠C=30°,EF=,求EB的长.15.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.16.如图,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD⊥OC于C,ED⊥AB于F,(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证:△DCE≌△OCB.17.如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.18.如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)如果⊙O的半径为5,sin∠ADE=,求BF的长.19.如图,AB是⊙O的直径,∠B=∠CAD.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.20.如图,点A、B、C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB.(2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长.
参考答案1.解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);则移动的距离是5﹣2=3;根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;(2)如图,连接AC,过点A作AD⊥BC于点D,则BC=2DC.由A(5,1)可得AD=1.又∵半径AC=2,∴在Rt△ADC中,DC=∴BC=2.2.(1)解:AB=AC(或∠B=∠C或AO平分∠BAC或AO⊥BC).(2)证明:过O作OE⊥AC于E,连OD;∵AB切⊙O于D,∴OD⊥AB.∵AB=AC,AO是BC边上中线,∴OA平分∠BAC,又∵OD⊥AB于D,OE⊥AC于E,∴OE=OD,∴AC是⊙O的切线.3.(1)证明:在△ABC中,∵AC=BC,∴∠CAB=∠CBA.在△ECD中,∵CE=CD,∴∠E=∠CDE,∵∠CBA=∠CDE,(同弧上的圆周角相等),∴∠E=∠CDE=∠CAB=∠CBA,∵∠E+∠ECD+∠EDC=180°,∠CAB+∠ACB+∠ABC=180°,∴∠ACB=∠ECD,∴∠ACB﹣∠ACD=∠ECD﹣∠ACD.∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD;(2)解:AD+BD=CD,理由:∵AC⊥BC,∴∠ACB=90°,∴∠DCE=90°;又∵CD=CE,∴△DCE为等腰直角三角形,∴DE=CD,又∵DE=AD+AE且AE=BD,∴AD+BD=CD.4.解:(1)连接OA,OE.∵直线AB、BC、CD分别与⊙O相切于A、E、D,∴OA⊥AB,OE⊥BC,∴∠OAB=∠OEB=90°,OA=OE在Rt△OAB与Rt△OEB中∴Rt△OAB≌Rt△OEB(HL)∴∠ABO=∠OBE,AB=BE同理可证:∠OCE=∠OCD,CE=CD,又∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=90°,∴∠BOC=90°(2)在Rt△BOC中,BC==10∴OB•OC=BC•rr==4.8即:⊙O的半径为4.8(3)由(1)可知:AB=BE,CE=CD,∴AB+CD=BE+CE=BC=10即:BC的值为105.(1)证明:连接CD,∵∠ACB=90°,BC为⊙O直径,∴ED为⊙O切线,且∠ADC=90°;∵ED切⊙O于点D,∴EC=ED,∴∠ECD=∠EDC;∵∠A+∠ECD=∠ADE+∠EDC=90°,∴∠A=∠ADE,∴AE=ED,∴AE=CE,即E为AC的中点;∴BE=CE;(2)解:连接OD,∵∠ACB=90°,∴AC为⊙O的切线,∵DE是⊙O的切线,∴EO平分∠CED,∴OE⊥CD,F为CD的中点,∵点E、O分别为AC、BC的中点,∴OE=AB==5,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,由勾股定理得:AC=8,∵在Rt△ADC中,E为AC的中点,∴DE=AC==4,在Rt△EDO中,OD=BC==3,DE=4,由勾股定理得:OE=5,由三角形的面积公式得:S△EDO=,即4×3=5×DF,解得:DF=2.4,在Rt△DFO中,由勾股定理得:OF===1.8.6.(1)证明:连接OD,如图,∵PD为切线,∴OD⊥PD,∴∠ODP=90°,即∠ODB+∠PDB=90°,∵CD⊥OB,∴∠DCB=90°,∴∠CDB+∠DBC=90°,∵OB=OD,∴∠ODB=∠OBD,∴∠CDB=∠PDB,∴DB平分∠PDC;(2)解:作BE⊥PD,如图,∵DB平分∠PDC,BC⊥CD,BE⊥PD,∴BC=BE,在Rt△PDC中,∵tanP===,∴PC=8,∴PD==10,设BC=x,则BE=x,PB=8﹣x,∵∠EPB=∠CPD,∴Rt△PBE∽Rt△PDC,∴BE:DC=PB:PD,即x:6=(8﹣x):10,解得x=3,即BC的长为3.7.(1)证明:连接AE,∵AB是圆的直径,∴AE⊥BC,∵AB=AC,∴AE平分∠BAC,∴∠BAE=∠CAE=∠CAB,∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:∵tan∠CBF=tan∠EAB=,∴=,∵AB=5,AB2=BE2+AE2,∴25=BE2+4BE2,∴BE=,∵∠BAE=∠CAE,∠EBD=∠CAE,∴∠EBD=∠EAB,∴tan∠EBD==,∴EH=,∴BH==.8.(1)证明:连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是半⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)解:∵AB是直径,∴∠ACB=90°,∵∠CAB=30°,∴∠COF=60°,∵PC是半⊙O的切线,AB=10,∴OC⊥PF,OC=OB=AB=5,∴OF===10,∴BF=OF﹣OB=5.9.(1)证明:如图,连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=30°,∴∠ABC=60°;在Rt△EMB中,∵∠E+∠MBE=90°,∴∠E=30°;∵∠E=∠ECF,∴∠ECF=30°,∴∠ECF+∠OCB=90°;∵∠ECF+∠OCB+∠OCF=180°,∴∠OCF=90°,∴CF为⊙O的切线;(2)解:在Rt△ACB中,∠A=30°,∠ACB=90°,∴AC=ABcos30°=,BC=ABsin30°=1;∵AC=CE,∴BE=BC+CE=1+,在Rt△EMB中,∠E=30°,∠BME=90°,∴MB=BEsin30°=,∴MO=MB﹣OB=.10.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.11.(1)证明:连接OE交DF于G,∵AC切⊙O于E,∴∠CEO=90°.又∵BD为⊙O的直径,∴∠DFC=∠DFB=90°.∵∠C=90°,∴四边形CEGF为矩形.∴CE=GF,∠EGF=90°,∴DF=2CE.(2)解:在Rt△ABC中,∵∠C=90°,BC=3,,∴AB=5,设OE=x,∵OE∥BC,∴△AOE∽△ABC.∴,∴,∴,∴BD=.在Rt△BDF中,∵∠DFB=90°,sinB=,∴cosB===,∴BF=.12.(I)证明:连接AD,连接OD;∵AB是直径,∴AD⊥BC,又∵△ABC是等腰三角形,∴D是BC的中点.∴OD∥AC,DE⊥AC.∴OD⊥DE.∴DE为⊙O的切线.(II)解:∵在等腰△ABC中,∠BAC=60°,∴△ABC是等边三角形.∵⊙O的半径为5,∴AB=BC=10,.∴.13.(1)证明:如图,连接OA;∵sinB=,∴∠B=30°,∵∠AOC=2∠B,∴∠AOC=60°;∵∠D=30°,∴∠OAD=180°﹣∠D﹣∠AOD=90°,∴AD是⊙O的切线.(2)解:∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=6,∵∠OAD=90°,∠D=30°,∴AD=•AO=.14.(1)证明:连接AD、OD,∵AC为⊙O的直径,∴∠ADC=90°,又∵AB=AC,∴CD=DB,又CO=AO,∴OD∥AB,∵FD是⊙O的切线,∴OD⊥EF,∴FE⊥AB;(2)∵∠C=30°,∴∠AOD=60°,∴∠F=30°,∴OA=OD=OF,∵∠AEF=90°,EF=,∴AE=,∵OD∥AB,OA=OC=AF,∴OD=2AE=2,AB=2OD=4,∴EB=3.15.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.16.解:(1)△DCE为等腰三角形,理由为:∵∠ABC=30°,圆周角∠ABC与圆心角∠AOC都对,∴∠AOC=2∠ABC=60°,又∵OA=OC,∴△OAC为等边三角形,∴∠OAC=∠OCA=60°,∵OC⊥CD,∴∠OCD=90°,∴∠DCE=180°﹣90°﹣60°=30°,又∵EF⊥AF,∴∠AFE=90°,∴∠E=180°﹣90°﹣60°=30°,∴∠DCE=∠E,∴DC=DE,则△DCE为等腰三角形;(2)∵OA=OB=1,OF=,∴AF=AO+OF=1+=,OA=AC=OC=1,在Rt△AEF中,∠E=30°,∴AE=2AF=+1,∴CE=AE﹣AC=+1﹣1=,又∵AB为圆O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,∴cos30°=,即BC=ABcos30°=,∴CB=CE=,在△OBC和△DCE中,∵,∴△OBC≌△DCE(ASA).17.(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE∽△CFE又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°∴OP⊥PF,∴PF是⊙O的切线.方法3、∵AC为直径,∴∠ABC=90°又∵∠ADO=90°,∴PD∥BF∴∠PCF=∠OPC∵OP=OC,∴∠OCP=∠OPC∴∠OCP=∠PCF,即∠ECP=∠FCP∵PD∥BF,∴∠ODE=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 变电运维安全责任清单
- 五千以内加减混合两步运算质量监控习题大全附答案
- 音乐教学优化策略
- 初级银行业法律法规与综合能力-2018年初级银行从业资格考试《法律法规与综合能力》真题汇编3
- 初级银行管理-银行专业初级《银行管理》高分通关卷4
- 初级个人理财-初级银行从业资格《个人理财》押题密卷3
- 职业体验申请书
- 加强机场安检提高旅客效率
- 教师续签申请书
- 2021人教版四年级数学下册第一单元-1.2乘、除法的意义和各部分间的关系-同步练习(含答案)
- 生物工程毕业设计开题报告
- 近视防控知识宣教(家长版)-课件
- 园林垃圾处理政策解读
- 中国行政区域划分一览表
- 《胎膜早破教案》课件
- 智慧农业技术助力农业精细化管理
- 苏教版四年级上册数学应用题100题及答案
- 指数函数及其图像与性质教案
- BPO糊的生产工艺
- 病毒性肝炎 健康宣教
- 《心脏听诊》课件2
评论
0/150
提交评论