版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
流体力学流体的宏观平衡流体力学流体的运动规律流体静力学流体动力学第二章流体静力学流体静力学绝对静止相对静止静止流体处于平衡时的力学规律
基础知识作用在流体上的力,不可压缩流体以地球作为惯性参考坐标系,当流体相对于惯性坐标系静止时,称流体处于绝对静止状态;当流体相对于非惯性参考坐标系静止时,称流体处于相对静止状态。研究流体静压强在空间的分布规律研究流体与固体间的相互作用及其
工程应用流体静力学研究的是流体平衡的规律在研究流体平衡时,通常将地球选作惯性坐标系流体处于静止或相对静止状态,两者都表现不出黏性作用,即切向应力都等于零。所以,流体静力学中所得的结论,无论对实际流体还是理想流体都是适用的。注第2章流体静力学§2.1
流体静压强及其特性§2.2
流体静压强的计算§2.3
压强的测量§2.4
作用于平面上的液体总压力§2.5
作用于曲面上的液体压力§2.6
习题§2.1
流体静压强及其特性1.
流体静压强当流体处于静止或相对静止状态时,作用在流体上的力只有法向应力,没有切向应力。此时的法向应力就是作用面内法线方向的静压强。用符号p表示,单位为Pa。面积ΔA上的平均流体静压强P:A
点上的流体静压强P:§2.1
流体静压强及其特性流体静压力:作用在某一面积上的总压力;流体静压强:作用在某一面积上的平均压强或某一点的压强。流体静压力与流体静压强的区别:§2.1
流体静压强及其特性2.
流体静压强的特性特性一:流体静压强的方向与作用面相垂直,并指向作用面的内法线方向这一特性可由反证法给予证明:假设在静止流体中,流体静压强方向不与作用面相垂直,而与作用面的切线方向成α角,如图2-1所示。§2.1
流体静压强及其特性αpnptp切向压强静压强法向压强图2-1§2.1
流体静压强及其特性
那么静压强p可以分解成两个分力即切向压强pt和法向压强pn。由于切向压强是一个剪切力,由第一章可知,流体具有流动性,受任何微小剪切力作用都将连续变形,也就是说流体要流动,这与我们假设是静止流体相矛盾。流体要保持静止状态,不能有剪切力存在,唯一的作用力便是沿作用面内法线方向的压强。又因为流体处于静止时不能承受拉应力,拉应力的存在也会破坏流体的平衡,所以流体静压强的方向必然是沿着作用面的内法线方向。由于流体内部的表面力只存在着压力,因此流体静力学的根本问题是研究流体静压强的问题。§2.1
流体静压强及其特性特性二:静止流体中任意一点流体压强的大小与作用面的方向无关,即任一点上各方向的流体静压强都相同。为了证明这一特性,我们在静止流体中围绕任意一点A取一微元四面体的流体微团ABCD,设直角坐标原点与A重合。微元四面体正交的三个边长分别为dx,dy和dz,如图2-2所示。因为微元四面体处于静止状态,所以作用在§2.1
流体静压强及其特性pypxpzpn作用在ACD面上的流体静压强作用在ABC面上的流体静压强作用在BCD面上的静压强作用在ABD和上的静压强图2-2微元四面体受力分析§2.1
流体静压强及其特性
其上的力是平衡的现在来分析作用于微元四面体ABCD上各力的平衡关系。由于静止流体中没有切应力,所以作用在微元四面体四个表面上的表面力只有垂直于各个表面的压强。因为所取微元四面体的各三角形面积都是无限小的,所以可以认为在无限小表面上的压强是均匀分布的。设作用在ACD、ABD、ABC和BCD四个面上的流体静压强分别为px、py、pz和pn,pn与x、y、z轴的夹角分别为α、β、γ,则作用在各面上流体的总压力分别为:§2.1
流体静压强及其特性
除压强外,还有作用在微元四面体流体微团上的质量力,该质量力分布在流体微团全部体积中。设流体微团的平均密度为ρ,而微元四面体的体积为dV=dxdydz/6,则微元四面体流体微团的质量为dm=ρdxdydz/6。假定作用在流流体上的单位质量力为f,它在各坐标轴上的分量分别为fx、fy、fz,则作用在微元四面体上的总质量力为:它在三个坐标轴上的分量为:§2.1
流体静压强及其特性
由于流体的微元四面体处于平衡状态,故作用在其上的一切力在任意轴上投影的总和等于零。对于直角坐标系,则
、
、。在轴方向上力的平衡方程为:
把px,pn
和Fx的各式代入得:§2.1
流体静压强及其特性
因为则上式变成或由于等式左侧第三项为无穷小,可以略去,故得:同理可得所以(2-1)
因为n的方向完全可以任意选择,从而证明了在静止流体中任一点上来自各个方向的流体静压强都相等。但是,静止流体中深度不同的点处流体的静压强是不一样的,而流体又是连续介质,所以流体静压强仅是空间点坐标的连续函数,即(2-2)§2.1
流体静压强及其特性证明:采用微元体分析法在静止流体中,在O点附近取出各边长分别为dx、dy、dz的微小四面体OABC。相应坐标轴为x、y、z。②受力分析①取微单元体表面力:只有法向应力,即静压强。微元面积上的静压强可近似认为是均匀分布的。以px、py、pz和
pn分别代表流体作用在OBC、OAC、OAB和ABC(n的方向是任意的)上的平均压强,则各面上的总压力为:§2.1
流体静压强及其特性P9OBC面:OAC面:OAB面:ABC面:质量力:设单位质量力为X、Y、Z,则微元体总质量力的分力为:四面体的体积为§2.1
流体静压强及其特性③列力的平衡方程x方向:∵∴上式变为:当dx、dy、dz→0时,四面体缩小为O点,上式中的质量力和前二项表面力相比为高阶微量,可以忽略不计,则:同理可证:,∴由于pn的方向是任意取的,所以上式表明:静止流体中同一点处各个方向的静压力均相等,与作用面方位无关。证毕!§2.1
流体静压强及其特性因此,可以把同一点各个方向的静压力都直接写成p,只是流体中不同点处的静压力是不同的,与该点所处的位置有关。在连续介质中,一点的静压力p将是点坐标的连续函数,即:其全微分形式为:3、静压力特性的适用范围(1)适用于流体内部在进行静压力测定时,根据特性二,只需确定探头的位置即可,不用考虑方向。(2)适用于流体与固体的交界面在进行容器器壁的受力分析时,根据特性一,流体静压力垂直于器壁,并指向壁面。§2.1
流体静压强及其特性§2.1
流体静压强及其特性说明:1.静止流体中不同点的压强一般是不等的,一点的各向静压强大小相等。2.运动流体是理想流体时,由于μ=0,不会产生切应力,所以理想流体动压强呈静水压强分布特性。等压面
液体中由压强相等的各点所构成的面(可以是平面或曲面)称为等压面,静止液体的自由表面就是等压面。等压面微分方程
等压面有两个特性:(1)等压面就是等势面;(2)等压面与质量力正交。§2.1
流体静压强及其特性注意:(1)静止液体质量力仅为重力时,等压面必定是水平面;(2)平衡液体与大气相接触的自由表面为等压面;(3)不同液体的交界面也是等压面。§2.1
流体静压强及其特性§2.2
流体静压强的计算1.
重力作用下流体静压强的基本方程
在静止液体中,任意取出一倾斜放置的微小圆柱体,微小圆柱体长为△Ɩ,端面积为dA,并垂直于柱轴线。周围的液体对圆柱体有侧面压力及两端面压力。侧面压力与轴向正交,沿轴向没有分力;轴的两端面的压力为P1和P2。
静止液体受的质量力只有重力,重力与轴线夹角为,可以分解为平行于轴向的G·cos和垂直于轴向的G·sin
两个分力。倾斜微小圆柱体轴向力的平衡,就是两端压力P1、P2及重力的轴向分力G·cos三个力作用下的平衡。即
§2.2流体静压强的计算微小圆柱体断面积dA极小,断面上各点压强的变化可以忽略不计,可以认为断面各点压强相等,设圆柱上端面的压强p1,下端面的压强p2,端面压力为P1=p1dA,P2=p2dA,重力G=γ△ƖdA,代入上式,得:消去dA,并由于△ƖG·cos=△h,整理得压强关系式:倾斜微小圆柱体的端面是任意选取的。因此,可以得出普遍关系式:即静止液体中任两点的压强差等于两点间的深度差乘以容重。压强随深度不断增加,而深度增加的方向就是静止液体的质量力——重力作用的方向。所以,压强增加的方向就是质量力的作用方向。
§2.2流体静压强的计算用压强关系式求静止液体内某一点的压强,设液面压强为po,液体容重为γ,该点在液面下深度为h,则:流体静力学基本方程式§2.2流体静压强的计算结论:
1)在重力作用下的静止液体中,静压强随深度按线性规律变化,即随深度的增加,静压强值成正比增大2)在静止液体中,任意一点的静压强由两部分组成:
一部分是自由液面上的压强p0;另一部分是该点到自由液面的单位面积上的液柱重量γh。3)在静止液体中,位于同一深度(h=常数)的各点的静压强相等,即任一水平面都是等压面。
4)两种容重不同互不混合的液体,在同一容器中处于静止状态,两种液体之间形成分界面。这种分界面即是水平面又是等压面5)对于气体,由于气体的容重很小,在高差不大的情况下,气柱产生的压强很小,因而可以忽略γh的影响,认为气体中各空间位置点的压强是相等的。§2.2流体静压强的计算帕斯卡定律在平衡状态下的不可压缩流体中,作用在其边界面上的压力,将等值、均匀地传递到流体的所有各点。施于在重力作用下不可压缩流体表面上的压强,将以同一数值沿各个方向传递到流体中的所有流体质点。水压机、增压机缸等液压传动装置的工作原理和设计都是以此原理为基础的§2.2流体静压强的计算设水箱水面的压强为po,水中1、2点到任选基准面o—o的高度为Zl及Z2,压强为p1及p2,将式中的深度改为高度差后得:液体静力学基本方程式的另一种形式P0P1P2Z1Z2图2-5推导静力学基本方程式用图§2.2流体静压强的计算这就是液体静力学基本方程式的另一种形式,也是我们常用的水静压强分布规律的一种形式。式中c为积分常数,由边界条件确定。这就是重力作用下的液体平衡方程,通常称为流体静力学基本方程。该方程的适用范围是:重力作用下的平衡状态均质不可压缩流体。结论:在同一种液体中,无论哪一点(Z+P/γ)总是一个常数。§2.2流体静压强的计算
为了进一步理解流体静力学基本方程式,现在来讨论流体静力学基本方程的物理意义和几何意义
1.物理意义从物理学可知,把质量为m的物体从基准面提升z高度后,该物体就具有位能mgz,则单位重量物体所具有的位能为z(mgz/mg=z)。所以式中z的物理意义表示为单位重量流体对某一基准面的位势能。p/γ表示单位重量流体的压强势能,这可说明如下:如图2-6所示,容器离基准面z处开一个小孔,接一个顶端封闭的玻璃管(称为测压管),并把其内空气抽出,形成完全真空(p=0),在开孔处流体静压强p的作用下,流体进入测压管,上升的高度h=p/γ称为单位重量流体的压强势能。位势能和压强势能之和称为单位重量流体的总势能。§2.2流体静压强的计算图2-6闭口测压管液柱上升高度§2.2流体静压强的计算所以式表示在重力作用下静止流体中各点的单位重量流体的总势能是相等的。这就是静止液体中的能量守恒定律。§2.2流体静压强的计算
2.几何意义单位重量流体所具有的能量也可以用液柱高度来表示,并称为水头。z具有长度单位,是流体质点离基准面的高度,所以z的几何意义表示为单位重量流体的位置高度或位置水头。p/γ也是长度单位,它的几何意义表示为单位重量流体的压强水头。位置水头和压强水头之和称为静水头。所以式也表示在重力作用下静止流体中各点的静水头都相等。在实际工程中,常需计算有自由液面的静止液体中任意一点的静压强。§2.2流体静压强的计算2.
压强的表示方法及度量单位压强的表示方法36压力的大小可以从不同的基准算起,因而有不同的表示方法。①绝对压力p绝:是以物理真空为零点而计量的压力。故压力永为正值。
③真空压力(真空度):绝对压力小于当地大气压而产生真空的程度。②相对压力(表压力):以当地大气压为零点而计量的压力。
若自由液面压力,则若自由液面压力,则若以液柱高度表示就称为真空高度,即注意:真空度是正值。——当地大气压,用气压表测量。§2.2流体静压强的计算2.
压强的表示方法及度量单位三种压力表示方法之间的相互关系:例题:已知,∴压强的表示方法§2.2流体静压强的计算2.
压强的表示方法及度量单位①应力单位:③液柱高单位②工程大气压单位Pa,即N/m21at(工程大气压)
=
1kgf/cm2=9.8×104Pa常以水柱高、水银柱高表示压强的大小。1atm
(标准大气压)=
760mmHg=13.6×9800×0.76N/m2
=
101292.8Pa
=
1.0336kgf/cm2例:一个工程大气压相当于汞柱高:一个工程大气压相当于水柱高:压强的量度单位§2.2流体静压强的计算3.
静止液体的压强分布图作用:形象直观地表示物体表面的静止液体的压强分布情况方法:将表面压强用箭头表示,箭头与物体表面垂直,长度与压强大小成比例,箭头的方向代表压强的作用方向,箭头落在物体表面,就构成了压强分布图。注意:由于物体的壁面两边都受到大气压力作用,相互抵消,因此一般只需画出相对压强的分布。§2.3压强的测量1、液柱式测压计1)测压管结构测压管是一种最简单的液柱式测压计。为了减少毛细现象所造成的误差,采用一根内径为10mm左右的直玻璃管。测量时,将测压管的下端与装有液体的容器连接,上端开口与大气相通,如右图所示。§2.3压强的测量1、液柱式测压计1)测压管
测量原理图在压强作用下,液体在玻璃管中上升高度,设被测液体的密度为,大气压强为pa,M点的绝对强为M点的计示压强为于是,用测得的液柱高度h,可得到容器中液体的计示压强及绝对压强。
测压管只适用于测量较小的压强,一般不超过9800Pa,相当于1mH2O。如果被测压强较高,则需加长测压管的长度,使用就很不方便。此外,测压管中的工作介质就是被测容器中的流体,所以测压管只能用于测量液体的压强。§2.3压强的测量1、液柱式测压计1)测压管注意的问题在管道中流动的流体的静压强也可用测压管和其它液柱式测压计测量。但是,为了减小测量误差,在测压管与管道连接处需要采取下列措施:
(1)测压管必须与管道内壁垂直;
(2)测压管管端与管道内壁平齐,不能伸出而影响流体的流动;
(3)测压管管端的边缘一定要很光滑,不能有尖缘和毛刺等;压强计环形装置
(4)为了减小由于连接的不完善而导致较大的误差,可采用如上图所示的连接装置。在连接处同一截面管壁上开若干个等距离小孔,外面罩上一圆环形通道,然后与测压管相接。这样,可以测得这一截面静压强的平均值。§2.3压强的测量1、液柱式测压计2)U形测压管结构这种测压计是一个装在刻度板上两端开口的U形玻璃管。测量时,管的一端与被测容器相接,另一端与大气相通,如图所示。U形管内装有密度ρ2大于被测流体密度ρ1的液体工作介质,如酒精、水、四氯化碳和水银等。它是根据被测流体的性质、被测压强的大小和测量精度等来选择的。如果被测压强较大时,可用水银,被测压强较小时,可用水或酒精。但一定要注意,工作介质不能与被测流体相互掺混。U形管测压计§2.3压强的测量1、液柱式测压计2)U形测压管U形管测压计的测量范围比测压管大,但一般亦不超过2.94×105Pa。U形管测压计可以用来测量液体或气体的压强;可以测量容器中高于大气压强的流体压强,也可以测量容器低于大气压强的流体压强,即可以作为真空计来测量容器中的真空。§2.3压强的测量1、液柱式测压计2)U形测压管测量原理下面分别介绍用U形管测压计测量p>pa和p<pa两种情况的测压原理。
(1)被测容器中的流体压强高于大气压强(即p>pa):如图(a)所示。U形管在没有接到测点M以前,左右两管内的液面高度相等。U形管接到测点上后,在测点M的压强作用下,左管的液面下降,右管的液面上升,直到平衡为止。这时,被测流体与管内工作介质的分界面1-2是一个水平面,故为等压面。§2.3压强的测量1、液柱式测压计2)U形测压管所以U形管左、右两管中的点1和点2的静压强相等,即p1=p2,可得:
p1=p+ρ1gh1
p2=pa+ρ2gh2
所以p+ρ1gh1=pa+ρ2gh2M点的绝对压强为p=pa+ρ2gh2-ρ1gh1
M点的计示压强为pe=p-pa=ρ2gh2-ρ1gh1于是,可以根据测得的h1和h2以及已知的ρ1和ρ2计算出被测点的绝对压强和计示压强值。§2.3压强的测量1、液柱式测压计2)U形测压管Paρ1Mp12h1h2ρ等压面P>Pa§2.3压强的测量1、液柱式测压计2)U形测压管
(2)被测容器中的流体压强小于大气压强(即p<pa):如图b所示。在大气压强作用下,U形管右管内的液面下降,左管内的液面上升,直到平衡为止。这时两管工作介质的液面高度差为h2。过右管工作介质的分界面作水平面1-2,它是等压面。列等压面方程
p+ρ1gh1+ρ2gh2=paM点的绝对压强为
p=p-ρ1gh1-ρ2gh2
M点的真空或负压强为
pv=pa-p=ρ1gh1+ρ2gh2§2.3压强的测量1、液柱式测压计2)U形测压管如果U形管测压计用来测量气体压强时,因为气体的密度很小,上式中的ρ1gh1项可以忽略不计。若被测流体的压强较高时,用一个U形管则过长,可以采用串联的U形管组成多U形管测压计。通常采用双U形管或三U形管测压计。
三U形管测压计§2.3压强的测量1、液柱式测压计3)U形压差计(1)结构
U形管差压计用来测量两个容器或同一容器(如管道流体中不同位置两点的压强差。测量时,把U形管两端分别与两个容器的测点A和B连接,如图所示。U形管中应注入较两个容器中的流体密度大且不相混淆的流体作为工作介质(即ρ>ρA,ρ>ρB)。U形管差压计§2.3压强的测量1、液柱式测压计3)U形压差计(2)测量原理若ρA>ρB
,U形管内液体向右管上升,平衡后,1-2是等压面,即p1=p2
:
因p1=p2
,故
则§2.3压强的测量1、液柱式测压计3)U形压差计
若两个容器内是同一流体,即ρA=ρB=ρ1,则上式可写成若两个容器内是同一气体,由于气体的密度很小,U形管内的气柱重量可忽略不计,上式可简化为
测量较小的液体压差,可以用倒置式U形差压计,例如用下图所示装置测量管道内节流阀前后的压差p1-p2。§2.3压强的测量1、液柱式测压计3)U形压差计得由上式可知,当ρ1和ρ2很接近时,即使压差(p1-p2)很小,仍可得到较大的h值,从而有利于测量。U形管内液体上部的工作介质可以用空气或别的气体代替,通过顶部的阀门将空气注入,逐渐增加液面上的压强,直到两管中液面达到某个合适的位置为止,这时ρ与ρ1相比可忽略不计,但在较高的p1和p2时,相应的空气压强也较高,就不能略去ρ。
设ρ<ρ1,当液体处于平衡状态时,水平面0-0是等压面,其上的压强为p0,则有§2.3压强的测量1、液柱式测压计4)倾斜微压计在未测压时,倾斜微压计的两端通大气,杯中液面和倾斜管中的液面在同一平面1-2上。当测量容器或管道中某处的压强时,杯端上部测压口与被测气体容器或管道的测点相连接,在被测气体压强p的作用下,杯中液面下降h1的高度至0—0位置,而倾斜玻璃管中液面上升了L长度,其上升高度
1.结构在测量气体的微小压强和压差时,为了提高测量精度,常采用微压计。倾斜微压计是由一个大截面的杯子连接一个可调节倾斜角度的细玻璃管构成,其中盛有密度为ρ的液体,如图所示。0ph1h2ΘpasLAρ120§2.3压强的测量1、液柱式测压计4)倾斜微压计2.测量原理根据流体平衡方程式,被测气体的绝对压强为其计示压强为
如果用倾斜微压计测量两容器或管道两点的压强差时,将压强大的p1连接杯端测压口,压强小的p2连接倾斜玻璃管出口端,则测得的压强差为§2.3压强的测量1、液柱式测压计4)倾斜微压计
由于杯内液体下降量等于倾斜管中液体的上升量,设A和s分别为杯子和玻璃管的横截面积,则或又于是上式可写成式中k—倾斜微压计常数,§2.3压强的测量1、液柱式测压计4)倾斜微压计
当A、s和ρ一定时,k仅是倾斜角Θ的函数。改变Θ的大小,可得到不同的k值,即将被测压强差的L值放大了不同的倍数。倾斜微压计的放大倍数由于s/A很小,可以略去不计,则当Θ=300时,,即把压强差的液柱读数放大了两倍;当Θ=100时,(倍)。可见,倾斜微压计可使读数更精确。但若Θ过小(如小于50)时,倾斜玻璃管内的液体将产生较大的波动,位置不易确定。对于每一种倾斜微压计,其常数值一般有0.2、0.3、0.4、0.6和0.8五个数据以供选用。§2.3
重力场中流体的平衡F2F1hped1d2aa例题1两圆筒用管子连接,内充水银。第一个圆筒直径d1=45cm,活塞上受力F1=3197N,密封气体的计示压强pe=9810Pa;第二圆筒直径d2=30cm,活塞上受力F2=4945.5N,开口通大气。若不计活塞质量,求平衡状态时两活塞的高度差h。(已知水银密度=13600kg/m3)。解:在F1、F2作用下,活塞底面产生的压强分别为:
图中a-a为等压面,第一圆筒上部是计示压强,第二圆筒上部的大气压强不必计入,故有:§2.3压强的测量1、液柱式测压计【例2】如图所示测量装置,活塞直径d=35㎜,油的相对密度d油=0.92,水银的相对密度dHg=13.6,活塞与缸壁无泄漏和摩擦。当活塞重为15N时,h=700㎜,试计算U形管测压计的液面高差Δh值。
§2.3压强的测量1、液柱式测压计【解】重物使活塞单位面积上承受的压强为(Pa)
列等压面1—1的平衡方程
解得Δh为:(㎝)§2.3压强的测量1、液柱式测压计【例3】如图所示为双杯双液微压计,杯内和U形管内分别装有密度ρ1=l000kg/m3和密度ρ2=13600kg/m3的两种不同液体,大截面杯的直径D=100mm,U形管的直径d=10mm,测得h=30mm,计算两杯内的压强差为多少?
§2.3压强的测量1、液柱式测压计【解】列1-2截面上的等压面方程由于两边密度为ρ1的液体容量相等,所以D2h2=d2h,代入上式得
=3709.6(pa)§2.3压强的测量1、液柱式测压计【例4】用双U形管测压计测量两点的压强差,如图所示,已知h1=600mm,h2=250mm,h3=200mm,h4=300mm,h5=500mm,ρ1=1000㎏/m3,ρ2=800㎏/m3,ρ3=13598㎏/m3,试确定A和B两点的压强差。
h1h2h3h4h511223344BBA1123§2.3压强的测量1、液柱式测压计解根据等压面条件,图中1—1,2—2,3—3均为等压面。可应用流体静力学基本方程式逐步推算。p1=p2+ρ1gh1p2=p1-ρ3gh2p3=p2+ρ2gh3p4=p3-ρ3gh4
pB=p4-ρ1g(h5-h4)逐个将式子代入下一个式子,则
pB=pA+ρ1gh1-ρ3gh2+ρ2gh3-ρ3gh4-ρ1g(h5-h4)所以pA-pB=ρ1g(h5-h4)+ρ3gh4+ρ3gh2-ρ2gh3-ρ1gh1=9.806×1000×(0.5-0.3)+133400×0.3-7850×0.2+133400×0.25-9.806×1000×0.6=67876(Pa)§2.3压强的测量1、液柱式测压计【例5】已知密闭水箱中的液面高度h4=60mm,测压管中的液面高度h1=100cm,U形管中右端工作介质高度,如图所示。试求U形管中左端工作介质高度h3为多少?§2.3压强的测量1、液柱式测压计【解】列1-1截面等压面方程,则
(a)列2-2截面等压面方程,则(b)把式(a)代入式(b)中
=0.1365(m)=136.5(mm)§2.3压强的测量二、金属测压计三、压力传感器压电式压力传感器压阻式压力传感器应变式压力传感器§2.4作用于平面上的液体总压力
许多工程设备,例如闸门、插板、水箱、油罐、压力容器的设备等,在设计时都会遇到液体作用在固体壁面上总压力的计算问题。由于静止液体中不存在切向应力,所以全部力都垂直于淹没物体的表面。静止液体作用在平面上的总压力分为静止液体作用在斜面、水平面和垂直面上的总压力三种,斜面是最普通的一种情况,水平面和垂直面是斜面的特殊情况。下面介绍静止液体作用在斜面上的总压力问题。§2.4作用于平面上的液体总压力假设有一块任意形状的平面MN与水平成Θ角放置在静止液体中,如图所示,图中右边是平面MN在垂直面上的投影图。hchchhpFycyp静止液体中倾斜平面上液体的总压力§2.4作用于平面上的液体总压力一、总压力的大小假设h为倾斜平面上任一点到自由液面的深度,y为相应的在OY轴上的距离。在深度h内选取一微元面积,认为其上的压强是均匀分布的,这样,该微元面积就相当于淹没在静止液体中的一条水平带。如果x表示任一深度处这条微元面积的宽度,则它的面积dA=xdy,由静止液体产生的压强p=ρgh,而h=ysinΘ,则作用在这条微元面积上静止液体的总压力为
dF=pdA=ρghdA=ρgysinΘdA
上式中没有考虑大气压强的作用,因为平面的四周都受有大气压强的作用,互相抵消,该式为仅由液体产生的总压力。§2.4作用于平面上的液体总压力
积分上式,即可得静止液体作用在整个淹没平面上的总压力为(2-37)式中是整个淹没平面面积A对OX轴的面积矩,yc为平面A的形心C到OX轴的距离,称为形心y坐标。如果用hc表示形心的垂直深度,称为形心淹深,那么,则
F=ρghcA
(2-38)因此静止液体作用在任一淹没平面上的总压力等于液体的密度、重力加速度、平面面积和形心淹深的乘积。如果保持平面形心的淹深不变,改变平面的倾斜角度,则静止液体作用在该平面的总压力值不变,即静止液体作用于淹没平面上的总压力与平面的倾斜角度无关。作用在静止§2.4作用于平面上的液体总压力
液体中任一淹没平面上液体的总压力也相当于以平面面积为底,平面形心淹深为高的柱体的液重。二、总压力的作用点淹没在静止液体的平面上总压力的作用点,即总压力作用线与平面的交点,称为压力中心。由合力矩定理可知,总压力对OX轴之矩等于各微元面积上的总压力对OX轴之矩的代数和。在图2-21中,作用在微元面积上的总压力对OX轴的力矩为如果用yp表示OY轴上点O到压力中心的距离,则按合力矩定理有§2.4作用于平面上的液体总压力
式中为平面面积对OX的惯性矩。上式除以式(2-37),得(2-39)根据惯性矩的平行移轴公式式中ICX—是面积对于通过它形心且平行于OX轴的轴线的惯性矩。因此,式(2-39)可以写成(2-40)从这个方程式可以看到,压力中心的位置与Θ角无关,即平面面积可以绕与OX轴平行且通过压力中心的轴旋转。由方程还可看到,压力中心总是在形心下方,随淹§2.4作用于平面上的液体总压力
没的深度增加,压力中心逐渐趋近于形心。按照上述方法同理可求得压力中心的x坐标(2-41)式中XC—平面形心x的坐标;
Ixy—平面面积对OXY坐标的两轴的惯性矩;
Icxy—平面面积对于通过形心而平行于坐标系两轴的惯性矩。通常,实际工程中遇到的平面多数是对称的,因此压力中心的位置是在平面对称的中心线上,此时不必求xp的坐标值,只需求得yp坐标值即可。表2-2给出几种常用截面的几何性质。§2.4作用于平面上的液体总压力截面几何图形面积A型心yc惯性距Icx
bh
1/2h1/12bh31/2bh2/3h1/36bh31/2h(a+b)§2.4作用于平面上的液体总压力§2.4作用于平面上的液体总压力
上述计算公式和方法同样适用于静止液体作用在垂直平面上的总压力问题。下面介绍静止液体作用在水平面上的总压力。由于水平面是水平放置的,压强分布是均匀分布的,那么仅有液体作用在底面为A、液深为h的水平面的总压力:
F=ρghA
(2-42)总压力的作用点是水平面面积的形心。可见,仅由液体产生作用在水平平面上的总压力同样只与液体的密度、平面面积和液深有关。图2-21中四个容器装有同一种液体,根据式(2-42),液体对容器底部的作用力是相同的,而与容器的形状无关,这一现象称为静水奇象。换句话说,液体作用在容器上的总压力不要和容器所盛液体的重量相混淆。工程上可以利用这一现象对容器底部进行严密性检查。§2.4作用于平面上的液体总压力图2-21静水奇象§2.4作用于平面上的液体总压力【例2-6】图2-22表示一个两边都承受水压的矩形水闸,如果两边的水深分别为h1=2m,h2=4m,试求每米宽度水闸上所承受的净总压力及其作用点的位置。
【解】淹没在自由液面下h1深的矩形水闸的形心yc=hc=h1/2
每米宽水闸左边的总压力为
由式(2-40)确定的作用点F1位置
§2.4作用于平面上的液体总压力图2-22§2.4作用于平面上的液体总压力
其中通过形心轴的惯性矩IC=bh31/12,所以即F1的作用点位置在离底1/3h=2/3m处。淹没在自由液面下h2深的矩形水闸的形心yc=hc=h2/2。每米宽水闸右边的总压力为(N)同理F2作用点的位置在离底1/3h2=2/3m处。每米宽水闸上所承受的净总压力为
F=F2-F1=78448-19612=58836(N)假设净总压力的作用点离底的距离为h,可按力矩方程求得其值。围绕水闸底O处的力矩应该平衡,即
(m)§2.5作用于曲面上的液体总压力
电厂中有许多承受液体总压力的曲面,主要是圆柱体曲面,如锅炉汽包、除氧器水箱、油罐和弧形阀门等。由于静止液体作用在曲面上各点的压强方向都垂直于曲面各点的切线方向,各点压强大小的连线不是直线,所以计算作用在曲面上静止液体的总压力的方法与平面不同。一、总压力的大小和方向
图2-23所示为一圆柱形开口容器中某一部分曲面AB上承受液体静止压强的情况。设曲面的宽度为b,在A处取一微小弧段ds,则作用在宽度为b、长度为ds的弧面dA上仅由液体产生的总压力为§2.5作用于曲面上的液体总压力CDBAxHhdFdFxdFzdsΘ图2-23作用在圆柱体曲面上的总压力§2.5作用于曲面上的液体总压力
这一总压力在OX轴与OZ轴方向的分力为:(2-43)(2-44)
1.水平分力由图2-23可知,,代入到式(2-43),则因此,静止液体作用在曲面AB上的总压力在OX轴方向的分力,即水平分力为(2-45)式中为曲面面积在垂直平面(OYZ坐标面)上的投影面积AX对OY轴的面积矩,它等于投影面积的形心到OY轴的距离与投影面积的乘积,即。§2.5作用于曲面上的液体总压力
该圆柱形曲面在垂直平面上的投影面积Ax=bH,其形心hc=H/2,则(2-46)由此可知,静止液体作用在曲面上的总压力的水平分力等于作用在这一曲面的垂直投影面上的总压力。F作用线的位置位于自由液面下2/3H处。
2.垂直分力由图2-23可知,代入到式(2-44),则因此静止液体作用在曲面AB上的总压力在OZ轴方向的分力,即垂直分力为(2-47)§2.5作用于曲面上的液体总压力
式中是曲面AB与自由液面间的柱体体积,在图2-23上就是面积OAB乘以曲面的宽度b,这个体积称为压力体。由此可知,静止液体作用在曲面上的总压力的垂直分力等于压力体的液体重量,Fx的作用线通过压力体的重心。
3.总压力的大小和方向求得了静止液体作用在曲面上水平分力Fx和垂直分力Fz后,就可确定静止液体作用在曲面上的总压力,即(2-48)总压力与垂线间夹角的正切为(2-49)§2.5作用于曲面上的液体总压力
二、总压力的作用点总压力的作用线通过O点Fx和Fz与作用线的交点。总压力作用线与曲面的交点就是总压力在曲面上的作用点,即压力中心。三、压力体的概念图
压力体是所研究的曲面(淹没在静止液体中的部分)到自由液面或自由液面的延长面间投影所包围的一块空间体积。它的计算式是一个纯数学体积计算式。作用在曲面上的垂直分力的大小等于压力体内液体的重量,并且与压力体内是否充满液体无关。为了说明这一点,作图2-24,它表示由两个形状、尺寸和淹深完全相同的曲面ab和a’b’所构成的容器,容器内盛有某种液体。曲面ab的压力体是过曲面的a和b两点引垂线到液面所得ab§2.5作用于曲面上的液体总压力hdd’c’m’mcFzF’z图2-24压力体§2.5作用于曲面上的液体总压力cd与容器的宽度构成的。而曲面a’b’的压力体是过a’和b’两点引垂线到液面延长面所得a’b’c’d’与容器宽度构成的。由于ab曲面和a’b’曲面的形状、尺寸和淹深完全相同,所以这两个压力体的体积相等,因而静止液体作用在曲面ab和a’b’曲面上总压力的垂直分力的大小是相等的。作用在ab曲面上的垂直分力Fz与作用在a’b’曲面上的垂直分力F’z只是数值上相同,而方向是不同的。因为流体在ab曲面的上方,故Fz的方向向下;液体在a’b’曲面的下方,故F’z的方向向上。通常称充满液体的压力体为实压力体或正压力体,如abcd;不充满液体的压力体称为虚压力体或负压力体,如a’b’c’d’。四、静止液体作用在曲面上的总压力的计算程序
(1)将总压力分解为水平分力Fx和垂直分力Fz。§2.5作用于曲面上的液体总压力(2)水平分力的计算,。
(3)确定压力体的体积。
(4)垂直分力的计算,方向由虚、实压力体确定。
(5)总压力的计算,。
(6)总压力方向的确定,。
(7)作用点的确定,即总压力的作用线与曲面的交点即是。§2.5作用于曲面上的液体总压力【例2-7】求图2-25所示流体施加到水平放置的单位长度圆柱体上的水平分力和垂直分力:(a)如果圆柱体左侧的流体是一种计示压强为35kPa被密封的箱内的气体;(b)如果圆柱体左侧的流体是水,水面与圆柱体最高部分平齐,水箱开口通大气。
【解】(a)圆柱体表面所研究部分的净垂直投影为则35kPa计示压强的气体作用在单位长度圆柱体上的水平分力为Az=[4-2(1-cos300)]×1
则35kPa计示压强的气体作用在单位长度圆柱体上的水平分力为Fx=pAz=35×[4-2(1-cos300)]×1=353.75=130.5(kN)
圆柱体表面所研究部分的净水平投影为
Ax=2sin300×1§2.5作用于曲面上的液体总压力
则气体作用在单位长度圆柱体上的垂直分力为
Fz=pAx=35×2sin300×1=35(kN)
(b)Fx=ρghcAx=9.81×(1/2×3.73)×(3.73×1)×1000=68.1(kN)
Fz=ρgVp=9.81×1000×(2100/3600×22+1/2×1×1.732+1×2)×1=100.5(KN)
§2.5作用于曲面上的液体总压力图2-25§2.5作用于曲面上的液体总压力【例2-8】图2-26所示为一水箱,左端为一半球形端盖,右端为一平板端盖。水箱上部有一加水管。已知h=600mm,R=150mm,试求两端盖所受的总压力及方向。
【解】(1)右端盖是一圆平面,面积为
A右=πR2
其上作用的总压力有
F右=ρg(h+R)A右=ρg(h+R)πR2=103×9.806×(0.6+0.15)×3.14×0.152=520(N)方向垂直于端盖水平向右(2)左端盖是一半球面,分解为水平方向分力Fx左和§2.5作用于曲面上的液体总压力
垂直方向分力Fz左。
Fx左=ρg(h+R)Ax=ρg(h+R)πR2=103×9.806×(0.6+0.15)×3.14×0.152=520(N)方向水平向左垂直方向分力由压力体来求,将半球面分成AB、BE两部分,AB部分压力体为ABCDEOA,即图中左斜线部分,记为VABCDEOA,它为实压力体,方向向下;BE部分压力体为BCDEB,即图中右斜线部分,记为VBCDEB
,它为虚压力体,方向向上。因此总压力体为它们的代数和。
Vp=VABCDEOA-VBCDEB=VABEOA§2.5作用于曲面上的液体总压力Vp正好为半球的体积,所以
Vp=1/2×4/3×πR3Fz左=ρgVp=ρg2/3πR3=103×9.806×2/3×3.14×0.153=69.3(N)
方向垂直向下总作用力为(N)合力通过球心与水平方向夹角为§2.5作用于曲面上的液体总压力图2-26§2.6浮体与潜体的稳定性
一、浮力的原理如图2-27所示,有一物体沉没在静止的液体中,它受到的静水总压力P可以分解成水平分力px、py和垂直分力pz。先确定水平分力。对于浸没于液体中的物体,可以找到一个母线平行于x轴的水平外切柱面与物体相切的封闭曲线BCFD,该曲线将物体分成左右两部分,作用于物体上沿着x方向的水平分力px就是这两部分的外部曲面上的水平分力Px1与Px2之和,它们的大小各为相应曲面在垂直于轴的垂直投影面上的水压力。而这两部分在此垂直面上§2.6浮体与潜体的稳定性Pz1JKABCDEFPx2PzPx1Pz2图2-27浮力原理§2.6浮体与潜体的稳定性
的投影面完全重合,故Px1与Px2大小相等,方向相反,因此Px=0。同理可得作用于物体上沿着y方向的水平分力Py=0。也就是浸没于液体中的物体在各水平方向的总压力为零。再确定垂直分力。作该物体的垂直外切柱面,与物体相切得封闭曲线ACED,将物体分成上下两部分,由式(2-47)知,液体作用在上部分表面上的总压力的垂直分力Pz1等于压力体ABEKJ的液体重量,方向垂直向下,即
Pz1=ρgVABEKJ
液体作用在下部分表面上的总压力的垂直分力Pz2等于压力体AFEKJ的液体重量,方向垂直向上,即
Pz2=-ρgVAFEKJ§2.6浮体与潜体的稳定性
液体作用于整个物体上的总压力的垂直分力Pz是上下两部分的外部曲面上的垂直分力的合力。即
Pz=Pz1+Pz2==-ρg(VAFEKJ-VABEKJ)=-ρgVAFEB
负号表示方向向上。上面的分析结果同样适用于漂浮在液面上的物体。此时,压力体的形状应为物体在自由液面以下部分的外表面与自由液面的延展面所包围的空间的形状,体积仍然为物体所排开的液体体积。综上所述,液体作用在沉没或漂浮物体上的总压力的方向垂直向上,大小等于物体所排开液体的重量,该力又称为浮力,作用线通过压力体的几何中心,又称浮心,这就是著名的阿基米德原理。从上面的分析可以看出:浮力的存在就是物体表面上作用的液体压强不平衡的结果。§2.6浮体与潜体的稳定性
一切浸没于液体中或漂浮于液面上的物体都受到两个力作用:一个是垂直向上的浮力,其作用线通过浮心;另一个是垂直向下的重力G,其作用线通过物体的重心。对浸没于液体中的均质物体,浮心与重心重合,但对于浸没于液体中的非均质物体或漂浮于液面上的物体重心与浮心是不重合的。根据重力G与浮力Pz的大小,物体在液体中将有三种不同的存在方式:
1.重力G大于浮力Pz
,物体将下沉到底,称为沉体;
2.重力G等于浮力Pz
,物体可以潜没于液体中,称为潜体;
3.重力G小于浮力Pz
,物体会上浮,直到部分物体露出液面,使留在液面以下部分物体所排开的液体重量恰好§2.6浮体与潜体的稳定性
等于物体的重力为止,称为浮体。阿基米德原理对于沉体、潜体和浮体都是正确的。二、浮体与潜体的稳定性上面提到的重力与浮力相等,物体既不上浮也不下沉,这是浮体和潜体维持平衡的必要条件。如果要求浮体和潜体在液体中不发生转动,还必须满足重力和浮力对任何一点的力矩的代数和为零,即重心C和浮心B在同一条铅直线上。但这种平衡的稳定性(也就是遇到外界干扰,浮体和潜体倾斜后,恢复到原来的平衡状态的能力)取决于重心C和浮心B在同一条铅直线上的相对位置。对于潜体,如图2-28(a)所示,重心C位于浮心B之下。若由于某种原因,潜体发生倾斜,使B、C两点不在同一条铅直线上,则重力G与浮力P将形成一个使潜体恢§2.6浮体与潜体的稳定性
恢复到原来平衡状态的恢复力偶(或叫扶正力偶),以反抗使其继续倾倒的趋势。一旦去掉外界干扰,潜体将自动恢复原有平衡状态。这种情况下的潜体平衡称为稳定平衡。反之,如图2-28(b)所示,重心C位于浮心B之上。潜体如有倾斜,使B、C两点不复在同一条铅直线上,则重力G与浮力P所形成的力偶,是一种倾覆力偶,将促使潜体继续翻转直到倒转一个方位,达到上述C点位于B点之下的稳定平衡状态为止。这种重心C位于浮心B之上、易于失稳的潜体平衡称为不稳定平衡。第三种情况是重心C与浮心B重合,如图2-28(c)所示。此时,无论潜体取何种方位,都处于平衡状态。这种情况下的平衡称为随遇平衡。§2.6浮体与潜体的稳定性
对于浮体来说,如果重心高于浮心,它的平衡还是有稳定的可能,这是因为浮体倾斜后,浸没在液体中的那部分形状改变了,浮心的位置也随之移动,而潜体的浮心并不因为倾斜而有所变化。§2.6浮体与潜体的稳定性图2-28潜体稳定性§2.6浮体与潜体的稳定性§2.5
流体对壁面的作用力1.
静止流体作用在平面上的总压力流体作用在平面上的总压力是作用于平面各点上的平行力系的合力。通常情况下要研究的工程设备都处于大气环境中,壁面两侧都受到大气压强的作用,因此只需按静止流体的计示压强去计算总压力。xypaohhChDdFpdFxxCxDdACDA总压力的大小和方向
在平面上取一微元面积dA,其中心的淹没深度为h,到oy轴的距离为x,流体作用在该微元面积上的微元总压力为:
在平面上积分上式,可得流体作用在平面上的总压力:§2.5
流体对壁面的作用力上式中,为平面对oy轴的面积矩,xc为平面形心的x坐标,故:流体作用在平面上的总压力等于以该平面为底、平面形心的淹没深度为高的柱体内流体的重量,并垂直指向平面。四个容器底面上的总压力相等§2.5
流体对壁面的作用力总压力的作用点总压力Fp对oy轴的力矩等于各微元总压力对oy轴的力矩的代数和,即:式中,为面积A对oy轴的惯性矩,故有:
根据惯性矩平行移轴定理Iy=Icy+xc2A(Icy为面积A对通过其形心并平行于oy轴的坐标轴的惯性矩),代入上式,得:§2.5
流体对壁面的作用力同理可求得压力中心的y坐标:若通过形心的坐标系中有任何一轴是平面的对称轴,则Icxy=0,yD=yc,压力
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《不良生活习惯》课件
- 2024年版特定股权转让与业绩保障协议版B版
- 房本除名登记协议书
- 2024年新型数字媒体内容制作与传播采购合同3篇
- 2025年绥化货车资格证考试题
- 《狼性臧其超作品》课件
- 2025年莱芜驾校考试货运从业资格证模拟考试
- 2025年聊城道路运输从业人员从业资格考试
- 2025年防城港货运从业资格证考试题库答案
- 《初中作文结构篇图》课件
- 华医网继续教育公共课必修选修课抗菌药物临床应用指导原则考试或补考题库及答案word检索版
- 国内CAR-T研发公司及进展一览CAR
- 静脉输血技术
- 《商务沟通与谈判》
- 小学数学六年级数学难题(含详细)
- 2023版中国近现代史纲要课件第一专题历史是最好的教科书PPT
- 耳尖放血课件完整版
- 漂流项目设计书
- 《酒泉市中心城区高铁片区控制性详细规划》B-2-19地块用地调整论证报告
- 烹饪学 讲义教案
- 《韩语考级不用背单词》读书笔记思维导图PPT模板下载
评论
0/150
提交评论