版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7讲立体几何中的向量方法第七章立体几何非零向量垂直2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔__________l1⊥l2n1⊥n2⇔__________直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔__________l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,mα∥βn∥m⇔n=λmα⊥βn⊥m⇔n·m=0n1=λn2n1·n2=0n·m=0cos〈n1,n2〉或-cos〈n1,n2〉DA2.向量法求二面角大小的两种方法(1)分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.[做一做]3.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为(
)A.45° B.135°C.45°或135° D.90°C4.长方体ABCDA1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为__________.第1课时证明空间中的位置关系考点一利用空间向量证明平行问题考点二
利用空间向量解决垂直问题(高频考点)考点三利用向量解决探索性问题考点一利用空间向量证明平行问题[规律方法]用向量证平行问题的常用方法线线平行证明两直线的方向向量共线线面平行①证明该直线的方向向量与平面的某一法向量垂直②证明直线的方向向量与平面内某直线的方向向量平行③证明该直线的方向向量可以用平面内的两个不共线的向量线性表示面面平行证明两平面的法向量平行(即为共线向量)考点二利用空间向量解决垂直问题(高频考点)(2015·安阳模拟)在四棱锥PABCD中,底面ABCD为正方形,PD⊥平面ABCD,E,F分别为棱AD,PB的中点,且PD=AD.求证:平面CEF⊥平面PBC.考点三利用向量解决探索性问题方法思想——探究空间坐标系的建立[名师点评]建系的基本思想:(1)寻找的线线垂直关系,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系,如果不存在这样的三条直线,则尽可能找两条垂直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东化工职业学院《园林招投标与工程概预算》2023-2024学年第一学期期末试卷
- 山东海事职业学院《日本商务礼仪》2023-2024学年第一学期期末试卷
- 山东工艺美术学院《药剂学实验》2023-2024学年第一学期期末试卷
- 公交司机急救课程设计
- 政治文化教育课程设计
- 小班组科学领域课程设计
- 幼儿园睡眠照料课程设计
- 护理毕业课程设计
- 微机电子时钟课程设计
- 寻找宝石课程设计
- 水质自检报告
- 能源与动力工程生涯发展展示
- 园林行业市场报告分析
- 一般现在时练习题(共10篇)
- 儿科护理质量持续改进案例
- ecmo治疗暴发性心肌炎的
- 教科版六年级下册科学第一单元《小小工程师》教材分析及全部教案(定稿;共7课时)
- 《基因工程疫苗》课件
- K线图入门教程大全一
- 2024年法律知识法治建设知识竞赛-中医药行业普法知识竞赛历年考试高频考点试题附带答案
- 区块链技术在IT运维中的应用
评论
0/150
提交评论