版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
TheSimplexMethodIntroductionTheSimplexMethodageneralprocedureforsolvinglinearprogrammingproblemsOriginsofthesimplexmethod1947Dantzigprovedtobearemarkablyefficientmethodthatisusedroutinelytosolvehugeproblemsontoday’scomputersWhydowestudythesimplexmethod?GraphicalmethodcanonlysolvetoyproblemsComputingprincipleofsoftwares.TheEssenceoftheSimplexMethodThesimplexmethodisanalgebraicprocedure.However,itsunderlyingconceptsaregeometric.Wefirstfindacorner-pointfeasiblesolution(CPFsolution).ExaminewhethertheCPFsolutionisoptimal.Ifthesolutionisnotoptimal,findabetterCPFsolution,whichisusuallyadjacenttothelastsolution.Iteratetheabovetwostepsuntilanoptimalsolutionisfoundoritisindicatedtheproblemhasnooptimalsolution.TheEssenceoftheSimplexMethod602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)TheEssenceoftheSimplexMethodInitialization:Choose(0,0)astheinitialCPFsolutiontoexamine.(ThisisaconvenientchoicebecausenocalculationarerequiredtoidentifythisCPFsolution.)OptimalityTest:Concludethat(0,0)isnotanoptimalsolution.(AdjacentCPFsolutionsarebetter.)602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)TheEssenceoftheSimplexMethodIteration1:MovetoabetteradjacentCPFsolution,(0,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)Betweenthetwoedgesofthefeasibleregionthatemanatefrom(0,0),choosetomovealongtheedgethatleadsupthex2axis.Stopatthefirstnewconstraintboundary:2x2=12.Solvefortheintersectionofthenewsetofconstraintboundaries:(0,6).TheEssenceoftheSimplexMethodIteration1:MovetoabetteradjacentCPFsolution,(0,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)OptimalityTest:Concludethat(0,6)isnotanoptimalsolution.(AnadjacentCPFsolutionisbetter.)TheEssenceoftheSimplexMethodIteration2:MovetoabetteradjacentCPFsolution,(2,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)Betweenthetwoedgesofthefeasibleregionthatemanatefrom(0,6),choosetomovealongtheedgethatleadstotheright.Stopatthefirstnewconstraintboundaryencounteredwhenmovinginthatdirection:3x1+2x2=12.Solvefortheintersectionofthenewsetofconstraintboundaries:(2,6).TheEssenceoftheSimplexMethodIteration2:MovetoabetteradjacentCPFsolution,(2,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)OptimalityTest:Concludethat(2,6)isanoptimalsolution,sostop.(NoneoftheadjacentCPFsolutionsarebetter.)TheEssenceoftheSimplexMethodThesimplexmethodfocusessolelyonCPFsolutions.Foranyproblemwithatleastoneoptimalsolution,findingonerequiresonlyfindingabestCPFsolution.Thesimplexmethodisaniterativealgorithm(asystematicsolutionprocedurethatkeepsrepeatingafixedseriesofsteps,calledaniteration,untiladesiredresulthasbeenobtained).TheEssenceoftheSimplexMethodWheneverpossible,theinitializationofthesimplexmethodchoosestheorigin(alldecisionvariablesequaltozero)tobetheinitialCPFsolution.GivenaCPFsolution,itismuchquickercomputationallytogatherinformationaboutitsadjacentCPFsolutionsthanaboutotherCPFsolutions.Therefore,eachtimethesimplexmethodperformsaniterationtomovefromthecurrentCPFsolutiontoabetterone,italwayschoosesaCPFsolutionthatisadjacenttothecurrentone.TheEssenceoftheSimplexMethodWecanidentifytherateoftheimprovementinZthatwouldbeobtainedbymovingalongeachedge.AmongtheedgeswithapositiverateofimprovementinZ,itthenchoosestomovealongtheonewiththelargestrateofimprovementinZ.TheEssenceoftheSimplexMethodApositiverateofimprovementinZimpliesthattheadjacentCPFsolutionisbetterthanthecurrentCPFsolution(sinceweareassumingmaximization),whereasanegativerateofimprovementinZimpliesthattheadjacentCPFsolutionisworse.Therefore,theoptimalitytestconsistssimplyofcheckingwhetheranyoftheedgesgiveapositiverateofimprovementinZ.Ifnonedo,thecurrentCPFsolutionisoptimal.AnExamplemaxz=50x1+100x2s.t.x1+x2≤300 2x1+x2≤400
x2≤250 x1,x2≥0maxz=50x1+100x2s.t.x1+x2+s1=300 2x1+x2+s2=400
x2+s3=250 x1,x2,s1,s2,s3≥0CoefficientMatrixThefeasibleregionisgivenasanumberoflinearequations:
x1+x2+s1=300 2x1+x2+s2=400 x2+s3=250Coefficientmatrixpj
isthejthcolumnvectorofcoefficientmatrixA.TherankofAis3,whichissmallerthan5,thenumberofvariables.ConceptsBasis:letAbeanm×n
coefficientmatrix,whoserankism.IfBisanon-singularm×msub-matrix,thenBisabasisoftheLPmodel.BasicVector:eachcolumninBiscalledabasicvector,andtherearembasicvectorsinB.Non-basicVector:eachcolumnoutsideBisanon-basicvector.BasicVariable:thevariablexicorrespondingtothebasicvectorpiiscalledabasicvariable,andtherearem
basicvariables.Non-basicVariable:thevariablexicorrespondingtothenon-basicvectorpiiscalledanon-basicvariable,andtherearen-m
non-basicvariables.
BasicSolutionBasicSolution:
foragivenbasis,weletthevaluesofthenon-basicvariablesbe0,thenwecansolvethemequationstogetauniquesolution.Inthissolution,thevaluesofbasicvariablesaredeterminedbysolvingtheequations,whilethevaluesofnon-basicvariablesare0.Assumewesettherightsub-matrixtobethebasis
Weletthevaluesofthenon-basicvariablesx1ands2be0,thenwehavethefollowingequations:
x2+s1=300
x2=400
x2+s3=250
ThenwegetasolutiontotheLPproblem:
x1=0,x2=400,s1=-100,s2=0,s3=-150InitialBasicFeasibleSolutionBasicFeasibleSolution(BFS):abasicsolutionthatisafeasiblesolution.FeasibleBasis:thebasiscorrespondingtoaBFS.HowtofindaninitialBFS?Itiseasyifthefollowingconditionshold:Everybjisnon-negative.Thereisanidentitysub-matrixinA,andletitbetheinitialbasis.OptimalityTestTotestwhetheraBFSisoptimal.TestnumberσjRepresentbasicvariablesintermsofnon-basicvariablesRepresentobjectivefunctionintermsofnon-basicvariablesThenthecoefficientofeachvariableintheobjectivefunctionisnowthetestnumberofthevariable.Denoteσiasthetestnumberofvariablexi.Inourexample,ifwetaketheidentitymatrixasthebasis,wehaveσ1=50,σ2=100,σ3=0,σ4=0,σ5=0.OptimalityTestAssumethattheobjectiverepresentedintermsofnon-basicvariablesisasfollows:Ifforsomebasis,wehaveallσj≤0,thenTomaximizethevalueofz,thevalueofshouldbe0.Inaddition,themaximumvalueofzequalsz0.Ontheotherhand,theBFScorrespondingtothecurrentbasisistheoptimalsolution,asthevaluesofthenon-basicvariablesxjareall0,whichmakesthevalueof0.
Foramaximizingproblem,theoptimalityconditionisσj≤0.Foraminimizingproblem,theoptimalityconditionisσj≥0.BasisTransformationActually,ourtaskistofindabasiswhosecorrespondingtestnumbersarenon-positive(formaximizingproblems);ifso,theassociatedBFSistheoptimalsolution.WhenthecurrentBFSisnotoptimal(atleastonetestnumberispositive),weshouldfindanewfeasiblebasissuchthatthecorrespondingBFSimprovesthevalueofobjectivefunction.BasistransformationDeterminethe“enteringvariable”Determinethe“leavingvariable”DeterminetheEnteringVariableAccordingtothedefinitionofthetestnumbers,weknowthatσi=0foreverybasicvariable.Ifthereexistsonetestnumberσj>0,thensettingnon-basicvariablexj
asabasicvariablemayincreaseitsvalueandthusthevalueofobjectivefunction.Letthenon-basicvariablewiththelargestvalueofσj
astheenteringvariableandsetitasabasicvariable.Inourexample,σ2=100isthemaximumtestnumber,thuswesetx2
astheenteringvariable.DeterminetheLeavingVariableTheprincipleofdeterminingtheleavingvariableistomakethenewbasicsolutionfeasible(thatis,aBFS)Inourexample:Wehaveknownthattheenteringvariableisx2,thusforthethreeequationswecanfindthreeupperboundsforx2,whichareDeterminetheLeavingVariableTherefore,themaximumvalueofx2thatensuresthenewbasicsolutionisaBFSis250.Thismakesthevalueofs30.Thuswelets3betheleavingvariable.Now,wehaveanewBFS:x1=0,x2=250,s1=50,s2=150,s3=0.Andthevalueofobjectivefunctionis25000,whichisbetterthan0.DeterminetheLeavingVariableDeterminetheleavingvariable----theminimumratiotestForeachequationwherethecoefficientoftheenteringvariableisstrictlypositive
(>0),wecalculatetheratio
oftheright-handsidetothecoefficientoftheenteringvariable.Thebasicvariableintheequationwiththeminimumratioissetastheleavingvariable.TheSimplexMethodInitializationFindtheinitialbasisandBFSOptimalitytestWhetherthetestnumbersareallnon-positive(formaximizingproblems)IftheBFSisnotoptimal,do“basistransformation”andgetanewBFS,gobacktolaststep;otherwise,thealgorithmisterminated.ComputationofTestNumberσjIneachiterationofbasistransformation,byre-rankingdecisionvariablesandtransforminglinearequations,wecanhavethefollowingmodel,inwhichthefeasiblebasisisanidentitymatrixoforderm:DenotebasicvariablesasDenotenon-basicvariablesasComputationofTestNumberσjFirstwedenoteeachbasicvariableinxitermsofnon-basicvariables:Theobjectivefunctioncanbewrittenas:where
TheSimplexMethodinTabularFormThetabularformofthesimplexmethodrecordsonlytheessentialinformation,namely,thecoefficientsofthevariables,theconstantsontheright-handsidesoftheequations,andthebasicvariableappearingineachequation.Thissaveswritingthesymbolsforthevariablesineachoftheequations,butwhatisevenmoreimportantisthefactthatitpermitshighlightingthenumbersinvolvedinarithmeticcalculationsandrecordingthecomputationscompactly.TheSimplexMethodinTabularFormmaxz=50x1+100x2+0s1+0s2+0s3s.t. x1+x2+s1 =300 2x1+x2 +s2=400
x2 +s3=250 x1,x2,s1,s2,s3≥0TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0The0thIteration(findinitialBFS)TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Alldecisionvariables(includingslackvariables)TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0CoefficientscorrespondingtothevariablesTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0CoefficientMatrixoftheconstraintsTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Theconstantsontheright-handsidesoftheequationsTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Identitymatrix,whichistheinitialfeasiblebasisTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Basicvariables,eachappearinginoneequationTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0CoefficientofeachbasicvariableTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0zjisthevalueofforcolumnj.WefirstleteachelementincolumnjmultiplyitscorrespondingelementincolumncB,thenaddthemup.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Thetestnumberσj,whichiscj-zj.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0z
isthevalueoftheobjectivefunctionforthecurrentBFS.Wefirstleteachelementincolumnb
multiplythecorrespondingelementincolumncB,andthenaddthemup.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0Asσ1andσ2
arepositiveandσ1<σ2,theinitialBFSisnotoptimalandx2
istheenteringvariable.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000000s1s2s3000
111002101001001300400250300/1400/1250/1zjσj=cj-zj
0000050100000z=0FindtheleavingvariableFindthepositivecoefficientsoftheenteringvariables.Findtheconstantsontheright-handsidesoftheequationsthatcorrespondtotheenteringvariables.Divideeachofthesecoefficientsintotherightsideconstantsforthesamerow.PivotElement:theintersectionofthecolumncorrespondingtotheenteringvariableandtherowcorrespondingtotheleavingvariable.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000001s1s2x200100
1010-12001-1010015015025050/1150/2—zjσj=cj-zj
01000010050000-100z=25000ThefirstiterationThroughrowtransformation,wesetthepivotelementas1andtheothercoefficientsinthecolumncorrespondingtotheenteringvariableas0.Notethattheelementsincolumnbarealsotransformed.Inourexample,afteriteration0,thepivotelementa32
isalready1,thuswekeepthe3rdrowunchanged.Thenweletthe3rdrowmultiply-1andaddittothe1strowandthe2ndrow,respectively,tomakethecoefficientsofx2be0.
TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000001s1s2x200100
1010-12001-1010015015025050/1150/2—zjσj=cj-zj
01000010050000-100z=25000Afteriteration1,thevalueofzisimprovedobviously.Next,wecanfindthattheenteringvariableandtheleavingvariablearex1ands1,respectively.Thepivotelementisa11.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2
s1
s2
s3bRatiobi/aij
501000002x1s2x2500100
1010-100-211010015050250zjσj=cj-zj
501005005000-500-50z=27500Aftertheseconditeration,wefindthatalltestnumbersarenon-positive,thusthecurrentBFSisoptimal,andthemostfavorablevalueisz=27500.PracticeAnotherProblem
minf=2x1+3x2
s.t.x1+x2≥350
x1≥125 2x1+x2≤600
x1,x2≥0Letz=-f
maxz=–2x1–3x2
s.t.x1+x2–s1=350
x1–s2=125 2x1+x2+s3=600
x1,x2,s1,s2,s3≥0BigMMethodForsomeproblems,itisdifficulttofindaninitialBFS,becauseitisdifficulttofindaninitialfeasiblebasis.Anidentitymatrixofordermisanidealfeasiblebasis.Constructanartificialproblembyaddingartificialvariables maxz=-2x1-3x2-M
a1-M
a2 s.t.x1+x2–s1+a1=350
x1–s2+a2=125 2x1+x2+s3=600
x1,x2,s1,s2,s3,a1,a2≥0BigMMethodDifferencebetweenartificialvariablesandslackvariablesThevaluesofslackvariablescanbeeither0orpositive.Thevaluesofartificialvariablesintheoptimalsolutioncanonlybe0;otherwise,thesolutionisnotafeasibleonefortheoriginalmodel.BigMMethodInordertomakethevaluesofartificialvariablesbe0inthesolutionwefinallyget,weletthecoefficientsoftheartificialvariablesbe-M,whereM
ishugepositivenumber.Thisactuallyassignsanoverwhelmingpenaltytohavingpositiveartificialvariables.Iftheoriginalproblemhasfeasiblesolutions,thesimplexmethodwillfinallysetartificialvariablestobenon-basicvariables;otherwise,theoriginalproblemhasnofeasiblesolutions.BigMMethodIterationBasicvariablescB
x1
x2
s1
s2
s3
a1
a2bRatio
-2-3000-M-M0a1a2s3-M-M0
11-10010100-10012100100350125600350/1125/1600/2zj-2M-M
M
M0-M-M-2+2M-3+M-M-M000-475M1a1x1s3-M-20
01-1101-1100-1001010210-2225125350225-----350/2
zj
-2-M
M-M+20-M
M-20-3+M-M
M-2002-2M-225M-250BigMMethodIterationBasicvariablescB
x1
x2
s1
s2
s3
a1
a2bRatio
-2-3000-M-M2a1x1s2-M-20
01/2-10-1/21011/2001/20001/20110.5300/0.5175/0.5zj
-2-1/2M-1M01/2M-1-M001/2M-2-M0-1/2M+10-M-50M-6003
x2
x1
s2
-3-20
01-20-12010101-1000111-1-1
100250125
zj
-2-3401-4000-40-1-M+4-M
-800TheTwo-PhaseMethodWeaddartificialvariablesanddividetheprocessofsolvinganLPproblemintotwophases.Phase1:tofindaBFSfortherealproblem maxz=-a1
-a2
s.t.x1+x2–s1+a1
=350
x1–s2+a2
=125 2x1+x2+s3=600
x1,x2,s1,s2,s3,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 格林童话读后感(15篇)
- 大学认识实习报告范文汇编10篇
- 六一儿童节主题活动总结10篇
- 个人试用期转正工作总结(汇编15篇)
- 幼儿园学前班新学期工作计划
- 教师的感恩演讲稿四篇
- 军训个人心得体会(集锦15篇)
- 山西财经大学计算机应用技术814数据结构考研题库
- 九年级下册数学教学计划锦集(17篇)
- 健康检查服务合同(2篇)
- 七年级历史试卷上册可打印
- 《东南亚经济与贸易》习题集、案例、答案、参考书目
- 烧烤店装修合同范文模板
- 2024年中国樱桃番茄种市场调查研究报告
- 数据分析基础与应用指南
- 人教版(PEP)小学六年级英语上册全册教案
- 广东省广州市海珠区2023-2024学年六年级上学期月考英语试卷
- 消防水域救援个人防护装备试验 大纲
- 机电样板施工主要技术方案
- 涉税风险管理方案
- 青岛市2022-2023学年七年级上学期期末道德与法治试题
评论
0/150
提交评论