2023届江苏省扬州市仪征市、高邮市九年级数学第一学期期末质量跟踪监视试题含解析_第1页
2023届江苏省扬州市仪征市、高邮市九年级数学第一学期期末质量跟踪监视试题含解析_第2页
2023届江苏省扬州市仪征市、高邮市九年级数学第一学期期末质量跟踪监视试题含解析_第3页
2023届江苏省扬州市仪征市、高邮市九年级数学第一学期期末质量跟踪监视试题含解析_第4页
2023届江苏省扬州市仪征市、高邮市九年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.42.如图,已知BD是⊙O直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.20° B.25° C.30° D.40°3.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.20° B.25° C.30° D.35°4.已知在中,,,那么下列说法中正确的是()A. B. C. D.5.如图,为的切线,切点为,连接,与交于点,延长与交于点,连接,若,则的度数为()A. B. C. D.6.用配方法解一元二次方程时,原方程可变形为()A. B. C. D.7.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°8.如图,双曲线与直线相交于、两点,点坐标为,则点坐标为()A. B. C. D.9.已知反比例函数,下列结论正确的是()A.图象在第二、四象限 B.当时,函数值随的增大而增大C.图象经过点 D.图象与轴的交点为10.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是()A. B.C. D.11.若抛物线y=ax2+2ax+4(a<0)上有A(-,y1),B(-

,y2),C(

,y3)三点,则y1,y2,y3的大小关系为()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y3<y112.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x(cm)统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm的概率是()组别(cm)x≤160160<x≤170170<x≤180x>180人数1542385A.0.05 B.0.38 C.0.57 D.0.95二、填空题(每题4分,共24分)13.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点坐标为(m,0).若2<m<5,则a的取值范围是_____.14.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为_____cm.15.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________.16.如图,矩形中,,将矩形按如图所示的方式在直线上进行两次旋转,则点在两次旋转过程中经过的路径的长是(结果保留)____________.17.点在抛物线上,则__________.(填“>”,“<”或“=”).18.如图,在平面直角坐标系中,点O是边长为2的正方形ABCD的中心.函数y=(x﹣h)2的图象与正方形ABCD有公共点,则h的取值范围是_____.三、解答题(共78分)19.(8分)如图,海面上一艘船由西向东航行,在处测得正东方向上一座灯塔的最高点的仰角为,再向东继续航行到达处,测得该灯塔的最高点的仰角为.根据测得的数据,计算这座灯塔的高度(结果取整数).参考数据:,,.20.(8分)某学校为了解学生“第二课堂“活动的选修情况,对报名参加A.跆拳道,B.声乐,C.足球,D.古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是;(2)将条形统计图补充完整;(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.21.(8分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.22.(10分)计算:(1)(2)解方程:23.(10分)在平面直角坐标系中,抛物线与轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.24.(10分)甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和1.利用画树状图或列表求下列事件的概率.(1)从两个口袋中各随机取出1个小球,恰好两个都是奇数;(2)若丙口袋中装有2个相同的小球,它们分别写有数字6和7,从三个口袋中各随机取出一个小球,恰好三个都是奇数.25.(12分)在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=-x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.26.十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示).利用树状图或表格求出该班选择和两项的概率.

参考答案一、选择题(每题4分,共48分)1、C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=1.故答案为C.【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.2、C【详解】∵,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.3、B【解析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根据等腰三角形的性质可求∠OFA的度数.【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故选B.【点睛】本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键.4、A【分析】利用同角三角函数的关系解答.【详解】在Rt△ABC中,∠C=90°,,则cosA=

A、cosB=sinA=,故本选项符合题意.

B、cotA=.故本选项不符合题意.

C、tanA=.故本选项不符合题意.

D、cotB=tanA=.故本选项不符合题意.

故选:A.【点睛】此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.5、D【分析】由切线性质得到,再由等腰三角形性质得到,然后用三角形外角性质得出【详解】切线性质得到故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键6、B【解析】试题分析:,,.故选B.考点:解一元二次方程-配方法.7、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.8、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.【详解】解:点A与B关于原点对称,点坐标为A点的坐标为(2,3).所以B选项是正确的.【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握.9、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误图像在第一、三象限B错误当时,函数值y随x的增大而减小C正确D错误反比例函数x≠0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题的关键.10、D【解析】画树状图展示所有16种等可能的结果数,找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率.故选D.【点睛】本题考查了列表法与树状图法.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.11、C【分析】根据抛物线y=ax2+2ax+4(a<0)可知该抛物线开口向下,可以求得抛物线的对称轴,又因为抛物线具有对称性,从而可以解答本题.【详解】解:∵抛物线y=ax2+2ax+4(a<0),∴对称轴为:x=,∴当x<−1时,y随x的增大而增大,当x>−1时,y随x的增大而减小,∵A(−,y1),B(−,y2),C(,y3)在抛物线上,且−<−,−0.5<,∴y3<y1<y2,故选:C.【点睛】本题考查二次函数的性质,解题的关键是明确二次函数具有对称性,在对称轴的两侧它的增减性不一样.12、D【分析】先计算出样本中身高不高于180cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不高于180cm的频率==0.1,所以估计他的身高不高于180cm的概率是0.1.故选:D.【点睛】本题考查了概率,灵活的利用频率估计概率是解题的关键.二、填空题(每题4分,共24分)13、<a或﹣5<a<﹣1.【分析】首先可由二次函数的表达式求得二次函数图象与x轴的交点坐标,可知交点坐标是由a表示的,再根据题中给出的交点横坐标的取值范围可以求出a的取值范围.【详解】解:∵y=ax1+(a1﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x=﹣a或x=,∴抛物线与x轴的交点为(﹣a,0),(,0),由题意函数与x轴的一个交点坐标为(m,0)且1<m<5,∴当a>0时,1<<5,即<a;当a<0时,1<﹣a<5,即﹣5<a<﹣1;故答案为<a或﹣5<a<﹣1.【点睛】本题综合考查二次函数图象与与x轴的交点坐标以及一元一次不等式的解法,熟练掌握二次函数图象与坐标轴交点坐标的求法以及一元一次不等式的解法是解题关键.14、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×1π×r×8=16π,解得r=1,然后解关于r的方程即可.【详解】解:设圆锥的底面圆的半径为r,根据题意得×1π×r×8=16π,解得r=1,所以圆锥的底面圆的半径为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15、.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=∴考点:1.相似三角形的判定与性质;2.勾股定理.16、【分析】根据勾股定理求出BD的长,点B旋转所经过的路径应是弧线,根据公式计算即可.【详解】如图,∵,∴,由旋转得:,,,,点B两次旋转所经过的路径长为=.故答案为:.【点睛】此题考查弧长公式,熟记公式,明确各字母代表的含义并正确代入公式进行计算即可17、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.18、【解析】由于函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,故可先分别得出点A和点B的坐标,因为这两个点为抛物线与与正方形ABCD有公共点的临界点,求出即可得解.【详解】∵点O是边长为1的正方形ABCD的中心,∴点A和点B坐标分别为(1,1)和(-1,1),∵函数y=(x-h)1的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形ABCD有公共点的临界点为点A和点B,把点B坐标代入y=(x-h)1,得1=(-1-h)1∴h=0(舍)或h=-1;把点A坐标代入y=(x-h)1,得1=(1-h)1∴h=0(舍)或h=1.函数y=(x-h)1的图象与正方形ABCD有公共点,则h的取值范围是-1≤h≤1.故答案为-1≤h≤1.【点睛】本题考查二次函数图象与正方形交点的问题,需要先判断抛物线的开口方向,顶点位置及抛物线与正方形二者的临界交点,需要明确临界位置及其求法.三、解答题(共78分)19、这座灯塔的高度约为45m.【分析】在Rt△ADC和Rt△BDC中,根据三角函数AD、BD就可以用CD表示出来,再根据就得到一个关于DC的方程,解方程即可.【详解】解:如图,根据题意,,,,.∵在中,,∴.∵在中,,∴.又,∴.∴.答:这座灯塔的高度约为45m.【点睛】本题考查了解直角三角形的应用-----方向角的问题,列出关于CD的方程是解答本题的关键,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.20、(1)200、144;(2)补全图形见解析;(3)被选中的2人恰好是1男1女的概率.【分析】(1)由A活动的人数及其所占百分比可得总人数,用360°乘以B活动人数所占比例即可得;

(2)用总人数减去其它活动人数求出C的人数,从而补全图形;

(3)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】(1)本次调查的学生共有30÷15%=200(人),扇形统计图中,B所对应的扇形的圆心角的度数是360°×=144°,故答案为200、144;(2)C活动人数为200﹣(30+80+20)=70(人),补全图形如下:(3)画树状图为:或列表如下:男女1女2女3男﹣﹣﹣(女,男)(女,男)(女,男)女1(男,女)﹣﹣﹣(女,女)(女,女)女2(男,女)(女,女)﹣﹣﹣(女,女)女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率.【点睛】本题考查了扇形统计图,条形统计图,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.21、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【点睛】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.22、(1);(2)【分析】(1)由题意利用乘方运算法则并代入特殊三角函数值进行计算即可;(2)根据题意直接利用因式分解法进行方程的求解即可.【详解】解:(1)(2),解得.【点睛】本题考查实数的混合运算以及解一元二次方程,熟练掌握乘方运算法则和特殊三角函数值以及利用因式分解法解方程是解题的关键.23、(1)点A的坐标为(-1,0),点B的坐标为(3,0)(2)①5;②6.【分析】(1)根据x轴上的点的坐标特征即y=0,可得关于x的方程,解方程即可;(2)①直接写出从-1到3的整数的个数即可;②先确定新抛物线的解析式,进而可得其顶点坐标,再结合函数图象解答即可.【详解】解:(1)在中,令y=0,,解得:,∴点A的坐标为(-1,0),点B的坐标为(3,0);(2)①线段AB之间横、纵坐标都是整数的点有(-1,0)、(0,0)、(1,0)、(2,0)、(3,0).∴线段AB上一共有5个整点;②抛物线沿翻折,得到的新抛物线是,如图,其顶点坐标是(1,1),观察图象可知:线段AB上有5个整点,顶点为1个整点,新抛物线在轴上方的部分与线段所围成的区域内(包括边界)共6个整点.【点睛】本题考查了二次函数与x轴的交点坐标、二次函数的性质以及对新定义的理解应用,熟练掌握抛物线的基本知识、灵活运用数形结合的思想是解题的关键.24、(1)图表见解析,;(2)图表见解析,【分析】(1)通过列表可得出所有等可能的结果数与取出的两个都是奇数的结果数,再利用概率公式求解即可;(2)通过画树状图可得出所有等可能的结果数与取出的三个都是奇数的结果数,再利用概率公式求解即可.【详解】解:(1)根据题意列表如下:乙甲123(1,3)(2,3)4(1,4)(2,4)1(1,1)(2,1)由表格可得所有等可能的结果有6种,其中两个都是奇数的可能有两种,∴P(两个奇数)=;(2)根据题意画树状图如下:由树状图可得所有等可能的结果有12种,其中三个都是奇数的可能有两种,∴P(两个奇数)=.【点睛】本题考查的知识点是利用画树状图或列表求事件的概率,比较简单,易于掌握.25、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根据已知条件求出d的范围:1≤d≤3,再将各点距离O点的距离,进行判断是否在此范围内即可,满足条件的即为随心点;(2)根据点E(4,3)是⊙O的“随心点”,可根据,求出d=5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论