山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析_第1页
山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析_第2页
山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析_第3页
山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析_第4页
山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省菏泽市前程职业中学2021年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列求导计算正确的是(

)A. B. C. D.参考答案:B【分析】根据函数求导法则得到相应的结果.【详解】A选项应为,C选项应为,D选项应为.故选:B.【点睛】这个题目考查了函数的求导运算,牢记公式,准确计算是解题的关键,属于基础题.2.双曲线:﹣=1的离心率为m,记函数y=x2与y=mx的图象所围成的阴影部分的面积为S(如图所示),任取x∈[0,2],y∈[0,4],则点(x,y)恰好落在阴影区域内的概率为()A. B. C. D.参考答案:C【考点】双曲线的简单性质.【分析】根据双曲线的性质求出离心率m,求出交点坐标,结合积分的应用求出阴影部分的面积,利用几何概型的概率公式进行计算即可.【解答】解:由﹣=1得a2=4,b2=12,则c2=4+12=16,即a=2,c=4,则离心率为m===2,则直线y=mx=2x代入y=x2,得x2=2x,则x=0或x=2,则阴影部分的面积S=∫(2x﹣x2)dx=(x2﹣x3)|=4﹣=,∵x∈[0,2],y∈[0,4],∴对应矩形的面积S=2×4=8,则则点(x,y)恰好落在阴影区域内的概率P==,故选:C3.设是可导函数,且

) A. B.-1 C.0 D.-2参考答案:B4.执行如图所示的程序框图,输出的S值为()A.1 B. C. D.参考答案:D【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值并输出,模拟程序的运行过程,即可得到答案.【解答】解:由于=﹣,则n=1,S=﹣1;n=2,S=﹣+﹣1=﹣1;n=3,S=2﹣+﹣+﹣1=2﹣1;…n=2016,S=﹣1;n=2017,S=﹣1.2017>2016,此时不再循环,则输出S=﹣1.故选:D.5.已知某种彩票中奖率为,某人买了份该彩票,则其(A)一定中奖

(B)恰有一份中奖

(C)至少有一份中奖(D)可能没有中奖参考答案:D略6.函数的图象在点处的切线斜率为,则实数(

)A.

B.

C.2

D.3参考答案:D7.已知等差数列的前n项和为Sn,若,且A、B、C三点共线(该直线不过原点O),则S100=(

)A.50

B.51

C.100

D.101参考答案:A略8.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.16参考答案:D【考点】系统抽样方法.【分析】根据系统抽样的方法和特点,样本的编号成等差数列,由条件可得此等差数列的公差为13,从而求得另一个同学的编号【解答】解:根据系统抽样的方法和特点,样本的编号成等差数列,一个容量为4的样本,已知3号、29号、42号同学在样本中,故此等差数列的公差为13,故还有一个同学的学号是16,故选D.9.等差数列中,,=12,则等于()A.-3

B.3

C.

D.-参考答案:B略10.设等差数列{an}的前n项和为Sn,若a1=﹣11,a4+a6=﹣6,则当Sn取最小值时,n等于()A.6 B.7 C.8 D.9参考答案:A【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得.【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2×(﹣11)+8d=﹣6,解得d=2,所以,所以当n=6时,Sn取最小值.故选A.【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力.二、填空题:本大题共7小题,每小题4分,共28分11.已知直线的倾斜角大小是,则_____________;参考答案:略12.在同一直角坐标系中,表示直线与正确的是()

A.B.C.

D.参考答案:C略13.一个正三棱柱的三视图如右图所示,则该三棱柱的侧面积是

.参考答案:14.若,则-()的最大值为

.参考答案:-715.已知关于x的方程x2+ax+2b=0(a∈R,b∈R)的一个根在区间(0,1)内,另一个根在区间(1,2)内,则的取值范围为.参考答案:(,2)【考点】一元二次方程的根的分布与系数的关系.【专题】计算题;数形结合;数形结合法;函数的性质及应用.【分析】设f(x)=x2+ax+2b,根据二次函数的性质与零点存在性定理可得f(0)>0、f(1)<0且f(2)>0.由此建立关于a、b的二元一次不等式组,设点E(a,b)为区域内的任意一点,根据直线的斜率公式可得k=,表示点E(a,b)与点D(1,3)连线的斜率,将点E在区域内运动并观察直线的倾斜角的变化,算出k的取值范围即可得出结论.【解答】解:设f(x)=x2+ax+2b,∵方程x2+ax+2b=0的一个根在区间(0,1)内,另一个根在区间(1,2)内,∴可得.作出满足上述不等式组对应的点(a,b)所在的平面区域,得到△ABC及其内部,即如图所示的阴影部分(不含边界).其中A(﹣3,1),B(﹣2,0),C(﹣1,0),设点E(a,b)为区域内的任意一点,则k=,表示点E(a,b)与点D(1,3)连线的斜率.∵KAD==,kCD==,∴KAD<k<KCD,∴k的取值范围是(,),则的取值范围为(,2)故答案为:(,2).【点评】本题着重考查了二次函数的性质、零点存在性定理、二元一次不等式组表示的平面区域、直线的斜率公式与两点间的距离公式等知识,属于中档题.16.设函数,集合,,若PM,则实数a的取值构成的集合是______.参考答案:{0,1}【分析】求出导函数,由求得或,结合分类讨论.【详解】由题意,令得或,若,则满足题意;时,首先有,即,,则,由PM得,解得或(舍去).∴的取值集合是.故答案为:.【点睛】本题结合导数,考查集合之间的包含关系.考查学生的推理论证能力和运算求解能力.17.(5分)已知直线y=k(x+4)与圆C:x2+y2+2x﹣3=0相交于两个不同点A、B,则k的取值范围是_________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合,,(1)求

(2)

(3)参考答案:解:

(三个集合的化简各给2分)(1)

(2)

(3)

略19.已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点,C1与C2的公共弦的长为2,过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(Ⅰ)求C2的方程;(Ⅱ)若|AC|=|BD|,求直线l的斜率.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【专题】开放型;圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过C1方程可知a2﹣b2=1,通过C1与C2的公共弦的长为2且C1与C2的图象都关于y轴对称可得,计算即得结论;(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),通过=可得(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l方程为y=kx+1,分别联立直线与抛物线、直线与椭圆方程,利用韦达定理计算即可.【解答】解:(Ⅰ)由C1方程可知F(0,1),∵F也是椭圆C2的一个焦点,∴a2﹣b2=1,又∵C1与C2的公共弦的长为2,C1与C2的图象都关于y轴对称,∴易得C1与C2的公共点的坐标为(±,),∴,又∵a2﹣b2=1,∴a2=9,b2=8,∴C2的方程为+=1;(Ⅱ)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),∵与同向,且|AC|=|BD|,∴=,∴x1﹣x2=x3﹣x4,∴(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,

设直线l的斜率为k,则l方程:y=kx+1,由,可得x2﹣4kx﹣4=0,由韦达定理可得x1+x2=4k,x1x2=﹣4,由,得(9+8k2)x2+16kx﹣64=0,由韦达定理可得x3+x4=﹣,x3x4=﹣,又∵(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,∴16(k2+1)=+,化简得16(k2+1)=,∴(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.【点评】本题是一道直线与圆锥曲线的综合题,考查求椭圆方程以及直线的斜率,涉及到韦达定理等知识,考查计算能力,注意解题方法的积累,属于中档题.20.已知函数.(I)当时,求函数的单调区间;(II)若函数的图象在点处的切线的倾斜角为,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?参考答案:

……………1分(I)当时,,

……2分

令时,解得,所以在(0,1)上单调递增;………4分

令时,解得,所以在(1,+∞)上单调递减.…………6分(II)因为函数的图象在点(2,)处的切线的倾斜角为45o,

所以.

所以,.………………7分

,……………………9分

因为任意的,函数在区间上总存在极值,

所以只需

…………11分

解得.……………12分21.设双曲线的半焦距为c,已知直线l过(a,0),(0,b)两点,且原点O到直线l的距离为,求此双曲线的离心率.参考答案:【考点】KC:双曲线的简单性质.【分析】先求出直线l的方程,利用原点到直线l的距离为,及又c2=a2+b2,求出离心率的平方e2,进而求出离心率.【解答】解:由题设条件知直线l的方程为即:ay+bx﹣ab=0∵原点O到直线l的距离为∴又c2=a2+b2∴从而16a2(c2﹣a2)=3c4∵a>0∴3e4﹣16e2+16=0解得:e2=4或∵0<a<b∴∴e2=4又e>1所以此双曲线的离心率为222.已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值﹣2.(1)求f(x)的单调区间和极大值;(2)证明对任意x1,x2∈(﹣1,1),不等式|f(x1)﹣f(x2)|<4恒成立.参考答案:【考点】6B:利用导数研究函数的单调性;3N:奇偶性与单调性的综合.【分析】(1)由奇函数的定义利用待定系数法求得d,再由x=1时f(x)取得极值﹣2.解得a,c从而确定函数,再利用导数求单调区间和极大值.(2)由(1)知,f(x)=x3﹣3x(x∈[﹣1,1])是减函数,从而确定|f(x1)﹣f(x2)|最小值,证明即可.【解答】解:(1)由奇函数的定义,应有f(﹣x)=﹣f(x),x∈R即﹣ax3﹣cx+d=﹣ax3﹣cx﹣d∴d=0因此,f(x)=ax3+cxf'(x)=3ax2+c由条件f(1)=﹣2为f(x)的极值,必有f'(1)=0,故解得a=1,c=﹣3因此,f(x)=x3﹣3x,f'(x)=3x2﹣3=3(x+1)(x﹣1)f'(﹣1)=f'(1)=0当x∈(﹣∞,﹣1)时,f'(x)>0,故f(x)在单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论