




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年广西南宁市中考数学试卷一、选择题(共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。)1.(3分)下列各数是有理数的是()A.π B. C. D.02.(3分)如图是一个几何体的主视图,则该几何体是()A. B. C. D.3.(3分)如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是()A. B. C. D.4.(3分)我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离约400000000千米,其中数据400000000科学记数法表示为()A.4×109 B.40×107 C.4×108 D.×1095.(3分)如图是某市一天的气温随时间变化的情况,下列说法正确的是()A.这一天最低温度是﹣4℃ B.这一天12时温度最高 C.最高温比最低温高8℃ D.0时至8时气温呈下降趋势6.(3分)下列运算正确的是()A.a2•a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.3a2﹣2a=a27.(3分)平面直角坐标系内与点P(3,4)关于原点对称的点的坐标是()A.(﹣3,4) B.(﹣3,﹣4) C.(3,﹣4) D.(4,3)8.(3分)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是()A. B. C.2 D.39.(3分)函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(3分)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A. B. C. D.11.(3分)如图,矩形纸片ABCD,AD:AB=:1,点E,F分别在AD,BC上,把纸片如图沿EF折叠,点A,B的对应点分别为A′,B′,连接AA′并延长交线段CD于点G,则的值为()A. B. C. D.12.(3分)定义一种运算:a*b=,则不等式(2x+1)*(2﹣x)>3的解集是()A.x>1或x< B.﹣1<x< C.x>1或x<﹣1 D.x>或x<﹣1二、填空题(本大题共6小题,每小题3分,共18分。)13.(3分)要使分式有意义,则x的取值范围是.14.(3分)分解因式:a2﹣4b2=.15.(3分)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为米(结果保留根号).16.(3分)为了庆祝中国共产党成立100周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩(百分制).小婷的三项成绩依次是84,95,90,她的综合成绩是.17.(3分)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分),且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是.18.(3分)如图,已知点A(3,0),B(1,0),两点C(﹣3,9),D(2,4)在抛物线y=x2上,向左或向右平移抛物线后,C,D的对应点分别为C′,D′.当四边形ABC′D′的周长最小时,抛物线的解析式为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤。)19.(6分)计算:23×(﹣+1)÷(1﹣3).20.(6分)解分式方程:=+1.21.(8分)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.22.(8分)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:整理数据:质量(kg)数量(箱)217a31分析数据:平均数众数中位数bc(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)?23.(8分)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.24.(10分)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.25.(10分)如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.26.(10分)如图,已知AD,EF是⊙O的直径,AD=6,⊙O与▱OABC的边AB,OC分别交于点E,M,连接CD并延长,与AF的延长线交于点G,∠AFE=∠OCD.(1)求证:CD是⊙O的切线;(2)若GF=1,求cos∠AEF的值;(3)在(2)的条件下,若∠ABC的平分线BH交CO于点H,连接AH交⊙O于点N,求的值.
2021年广西南宁市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。)1.(3分)下列各数是有理数的是()A.π B. C. D.0【分析】根据有理数的定义,可得答案.【解答】解:0是有理数.故选:D.2.(3分)如图是一个几何体的主视图,则该几何体是()A. B. C. D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依题意,该几何体的主视图为上下两个梯形,易判断该几何体是上下两个圆台组成.【解答】解:由该几何体的主视图可知,该几何体是.故选:C.3.(3分)如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C出口走出的概率是()A. B. C. D.【分析】直接由概率公式求解即可.【解答】解:小明恰好在C出口出来的概率为,故选:B.4.(3分)我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离约400000000千米,其中数据400000000科学记数法表示为()A.4×109 B.40×107 C.4×108 D.×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:400000000=4×108,故选:C.5.(3分)如图是某市一天的气温随时间变化的情况,下列说法正确的是()A.这一天最低温度是﹣4℃ B.这一天12时温度最高 C.最高温比最低温高8℃ D.0时至8时气温呈下降趋势【分析】根据该市一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从图象可以看出,这一天中的最高气温是大概14时是8℃,最低气温是﹣4℃,从0时至4时及14时至24时,这天的气温在逐渐降低,从4时至14时,这天的气温在逐渐升高,故A正确,B,D错误;这一天中最高气温与最低气温的差为12℃,故C错误;故选:A.6.(3分)下列运算正确的是()A.a2•a3=a5 B.(a2)3=a5 C.a6÷a2=a3 D.3a2﹣2a=a2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法除法运算法则计算得出答案.【解答】解:A.a2•a3=a5,故此选项符合题意;B.(a2)3=a6,故此选项不合题意;C.a6÷a2=a4,故此选项不合题意;D.3a2﹣2a,不是同类项,无法合并,故此选项不合题意.故选:A.7.(3分)平面直角坐标系内与点P(3,4)关于原点对称的点的坐标是()A.(﹣3,4) B.(﹣3,﹣4) C.(3,﹣4) D.(4,3)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点P(3,4)关于中心对称的点的坐标为(﹣3,﹣4).故选:B.8.(3分)如图,⊙O的半径OB为4,OC⊥AB于点D,∠BAC=30°,则OD的长是()A. B. C.2 D.3【分析】连接OA,证明△AOC为等边三角形,根据等边三角形的性质解答即可.【解答】解:连接OA,∵OC⊥AB,∠BAC=30°,∴∠ACO=90°﹣30°=60°,∵OA=OC,∴△AOC为等边三角形,∵OC⊥AB,∴OD=OC=2,故选:C.9.(3分)函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选:D.10.(3分)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A. B. C. D.【分析】设共有x人,y辆车,根据“如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设共有y人,x辆车,依题意得:.故选:B.11.(3分)如图,矩形纸片ABCD,AD:AB=:1,点E,F分别在AD,BC上,把纸片如图沿EF折叠,点A,B的对应点分别为A′,B′,连接AA′并延长交线段CD于点G,则的值为()A. B. C. D.【分析】过点F作FH⊥AD于点H,设AG与EF交于点O,利用两角对应相等求证△ADG∽△FHE,即可求出的值.【解答】解:过点F作FH⊥AD于点H,设AG与EF交于点O,如图所示:由折叠A与A'对应易知:∠AOE=90°,∵∠EAO+∠AEO=90°,∠EAO+∠AGD=90°,∴∠AEO=∠AGD,即∠FEH=∠AGD,又∵∠ADG=∠FHE=90°,∴△ADG∽△FHE,∴====,故选:A.12.(3分)定义一种运算:a*b=,则不等式(2x+1)*(2﹣x)>3的解集是()A.x>1或x< B.﹣1<x< C.x>1或x<﹣1 D.x>或x<﹣1【分析】分2x+1≥2﹣x和2x+1<2﹣x两种情况,根据新定义列出不等式组分别求解可得.【解答】解:由新定义得或,解得x>1或x<﹣1故选:C.二、填空题(本大题共6小题,每小题3分,共18分。)13.(3分)要使分式有意义,则x的取值范围是x≠2.【分析】分式有意义,则分母x﹣2≠0,由此易求x的取值范围.【解答】解:当分母x﹣2≠0,即x≠2时,分式有意义.故答案为:x≠2.14.(3分)分解因式:a2﹣4b2=(a+2b)(a﹣2b).【分析】直接用平方差公式进行分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:a2﹣4b2=(a+2b)(a﹣2b).故答案为:(a+2b)(a﹣2b).15.(3分)如图,从楼顶A处看楼下荷塘C处的俯角为45°,看楼下荷塘D处的俯角为60°,已知楼高AB为30米,则荷塘的宽CD为(30﹣10)米(结果保留根号).【分析】在两个直角三角形中,利用特殊锐角的三角函数可求出答案.【解答】解:由题意可得,∠ADB=60°,∠ACB=45°,AB=30m,在Rt△ABC中,∵∠ACB=45°,∴AB=BC,在Rt△ABD中,∵∠ADB=60°,∴BD=AB=10(m),∴CD=BC﹣BD=(30﹣10)m,故答案为:(30﹣10).16.(3分)为了庆祝中国共产党成立100周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩(百分制).小婷的三项成绩依次是84,95,90,她的综合成绩是89分.【分析】根据加权平均数的定义列式计算可得.【解答】解:小婷的综合成绩为84×50%+95×40%+90×10%=89(分),故答案为:89分.17.(3分)如图,从一块边长为2,∠A=120°的菱形铁片上剪出一个扇形,这个扇形在以A为圆心的圆上(阴影部分),且圆弧与BC,CD分别相切于点E,F,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是.【分析】连接AC、AE,如图,利用菱形的性质得到∠BAC=60°,AB=BC,则可判断△ABC为等边三角形,再根据切线的性质得AE⊥BC,所以BE=CE=1,利用勾股定理计算出AE=,设圆锥的底面圆半径为r,由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,所以2πr=,然后解方程即可.【解答】解:连接AC、AE,如图,∵四边形ABCD为菱形,∴∠BAC=∠BAD=×120°=60°,AB=BC,∴△ABC为等边三角形,∵圆弧与BC相切于E,∴AE⊥BC,∴BE=CE=1,∴AE===,设圆锥的底面圆半径为r,根据题意得2πr=,解得r=,即圆锥的底面圆半径为.故答案为.18.(3分)如图,已知点A(3,0),B(1,0),两点C(﹣3,9),D(2,4)在抛物线y=x2上,向左或向右平移抛物线后,C,D的对应点分别为C′,D′.当四边形ABC′D′的周长最小时,抛物线的解析式为y=(x﹣)2.【分析】过C、D作x轴平行线,作A关于直线y=4的对称点A',过A'作A'E∥CD,且A'E=CD,连接BE交直线y=9于C',过C'作C'D'∥CD,交直线y=4于D',四边形A'ECD和四边形C'D'DC是平行四边形,可得四边形A'EC'D'是平行四边形,可证BE=BC'+EC'=BC'+AD',BC'+AD'最小,最小值为BE的长度,故此时四边形ABC′D′的周长最小,求出A'(3,8),E(﹣2,13),可得直线BE解析式为y=﹣x+,从而C'(﹣,9),CC'=﹣﹣(﹣3)=,故将抛物线y=x2向右移个单位后,四边形ABC′D′的周长最小,即可得到答案.【解答】解:过C、D作x轴平行线,作A关于直线y=4的对称点A',过A'作A'E∥CD,且A'E=CD,连接BE交直线y=9于C',过C'作C'D'∥CD,交直线y=4于D',如图:作图可知:四边形A'ECD和四边形C'D'DC是平行四边形,∴A'E∥CD,C'D'∥CD,且A'E=CD,C'D'=CD,∴C'D'∥A'E且C'D'=A'E,∴四边形A'EC'D'是平行四边形,∴A'D'=EC',∵A关于直线y=4的对称点A',∴AD'=A'D',∴EC'=AD',∴BE=BC'+EC'=BC'+AD',即此时BC'+AD'转化到一条直线上,BC'+AD'最小,最小值为BE的长度,而AB、CD为定值,∴此时四边形ABC′D′的周长最小,∵A(3,0)关于直线y=4的对称点A',∴A'(3,8),∵四边形A'ECD是平行四边形,C(﹣3,9),D(2,4),∴E(﹣2,13),设直线BE解析式为y=kx+b,则,解得,∴直线BE解析式为y=﹣x+,令y=9得9=﹣x+,∴x=﹣,∴C'(﹣,9),∴CC'=﹣﹣(﹣3)=,即将抛物线y=x2向右移个单位后,四边形ABC′D′的周长最小,∴此时抛物线为y=(x﹣)2,故答案为:y=(x﹣)2.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤。)19.(6分)计算:23×(﹣+1)÷(1﹣3).【分析】原式先计算乘方运算,再计算括号内的加减运算,最后算乘除运算即可求出值.【解答】解:原式=8×÷(﹣2)=4÷(﹣2)=﹣2.20.(6分)解分式方程:=+1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x+3x+3,解得:x=﹣3,检验:当x=﹣3时,3(x+1)≠0,∴分式方程的解为x=﹣3.21.(8分)如图,四边形ABCD中,AB∥CD,∠B=∠D,连接AC.(1)求证:△ABC≌△CDA;(2)尺规作图:过点C作AB的垂线,垂足为E(不要求写作法,保留作图痕迹);(3)在(2)的条件下,已知四边形ABCD的面积为20,AB=5,求CE的长.【分析】(1)由AB∥CD得∠ACD=∠CAB,结合∠B=∠D,AC=CA,即可根据AAS证明△ABC≌△CDA;(2)以C为圆心,CB为半径作弧,交线段AB延长线于F,分别以B、F为圆心,大于BF的线段长为半径作弧,两弧交于G、H,连接GH,交AF于E,作直线CE,则CE即为AB的垂线;(3)由△ABC≌△CDA,四边形ABCD的面积为20,可得S△ABC=S△CDA=10,即可列出AB•CE=10,而AB=5,即得CE=4.【解答】(1)证明:∵AB∥CD,∴∠ACD=∠CAB,在△ABC和△CDA中,,∴△ABC≌△CDA(AAS);(2)解:过点C作AB的垂线,垂足为E,如图:(3)解:由(1)知:△ABC≌△CDA,∵四边形ABCD的面积为20,∴S△ABC=S△CDA=10,∴AB•CE=10,∵AB=5,∴CE=4.22.(8分)某水果公司以10元/kg的成本价新进2000箱荔枝,每箱质量5kg,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取20箱,去掉损坏荔枝后称得每箱的质量(单位:kg)如下:整理数据:质量(kg)数量(箱)217a31分析数据:平均数众数中位数bc(1)直接写出上述表格中a,b,c的值.(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这2000箱荔枝共损坏了多少千克?(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本(结果保留一位小数)?【分析】(1)根据题意以及众数、中位数的定义分别求出即可;(2)从平均数、中位数、众数中,任选一个计算即可;(3)求出成本,根据(2)的结果计算即可得到答案.【解答】解:(1)a=20﹣2﹣1﹣7﹣3﹣1=6,分析数据:样本中,出现的次数最多;故众数b为,将数据从小到大排列,找最中间的两个数为,,故中位数c==,∴a=6,b=,c=;(2)选择众数,这2000箱荔枝共损坏了2000×(5﹣)=600(千克);(3)10×2000×5÷(2000×5﹣600)≈(元),答:该公司销售这批荔枝每千克定为元才不亏本.23.(8分)【阅读理解】如图①,l1∥l2,△ABC的面积与△DBC的面积相等吗?为什么?解:相等.在△ABC和△DBC中,分别作AE⊥l2,DF⊥l2,垂足分别为E,F.∴∠AEF=∠DFC=90°,∴AE∥DF.∵l1∥l2,∴四边形AEFD是平行四边形,∴AE=DF.又S△ABC=BC•AE,S△DBC=BC•DF.∴S△ABC=S△DBC.【类比探究】如图②,在正方形ABCD的右侧作等腰△CDE,CE=DE,AD=4,连接AE,求△ADE的面积.解:过点E作EF⊥CD于点F,连接AF.请将余下的求解步骤补充完整.【拓展应用】如图③,在正方形ABCD的右侧作正方形CEFG,点B,C,E在同一直线上,AD=4,连接BD,BF,DF,直接写出△BDF的面积.【分析】【类比探究】由等腰三角形的性质可得DF=CF=CD=2,∠ADC=∠EFD=90°,可证AD∥EF,可得S△ADE=S△ADF,由三角形的面积公式可求解;【拓展应用】连接CF,由正方形的性质可得∠BDC=∠GCF,可得BD∥CF,可得S△BDF=S△BCD,由三角形的面积公式可求解.【解答】解:【类比探究】过点E作EF⊥CD于点F,连接AF,∵四边形ABCD是正方形,∴AD=CD=4,∠ADC=90°,∵DE=CE,EF⊥CD,∴DF=CF=CD=2,∠ADC=∠EFD=90°,∴AD∥EF,∴S△ADE=S△ADF,∴S△ADE=×AD×DF=×4×2=4;【拓展应用】如图③,连接CF,∵四边形ABCD和四边形CGFE都是正方形,∴∠BDC=45°,∠GCF=45°,∴∠BDC=∠GCF,∴BD∥CF,∴S△BDF=S△BCD,∴S△BDF=BC×CD=8.24.(10分)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.【分析】(1)根据题意将点(0,4)和(4,8)代入C2:y=﹣x2+bx+c求出b、c的值即可写出C2的函数解析式;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:﹣m2+m+4﹣(﹣m2+m+1)=1,解出m即可;(3)求出山坡的顶点坐标为(7,),根据题意即﹣×72+7b+4>3+,再解出b的取值范围即可.【解答】解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:,解得:,∴抛物线C2的函数解析式为:y=﹣x2+x+4;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:﹣m2+m+4﹣(﹣m2+m+1)=1,整理得:(m﹣12)(m+4)=0,解得:m1=12,m2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)C1:y=﹣x2+x+1=﹣(x﹣7)2+,当x=7时,运动员到达坡顶,即﹣×72+7b+4>3+,解得:b>.25.(10分)如图①,在△ABC中,AD⊥BC于点D,BC=14,AD=8,BD=6,点E是AD上一动点(不与点A,D重合),在△ADC内作矩形EFGH,点F在DC上,点G,H在AC上,设DE=x,连接BE.(1)当矩形EFGH是正方形时,直接写出EF的长;(2)设△ABE的面积为S1,矩形EFGH的面积为S2,令y=,求y关于x的函数解析式(不要求写出自变量x的取值范围);(3)如图②,点P(a,b)是(2)中得到的函数图象上的任意一点,过点P的直线l分别与x轴正半轴,y轴正半轴交于M,N两点,求△OMN面积的最小值,并说明理由.【分析】(1)设EF=m.证明AH=HG=CG=m,构建方程求解即可.(2)解直角三角形可得EH=AE=(8﹣x),EF=DE=x,利用三角形面积公式,矩形的面积公式求解即可.(3)如图③中,由(2)可知点P在y=上,当OP最小时,点P在第一象限的角平分线上,此时P(,),当直线MN⊥OP时,△OMN的面积最小.【解答】解:(1)设EF=m.∵BC=14,BD=6,∴CD=BC﹣BD=14﹣6=8,∵AD=8,∴AD=DC=8,∵AD⊥BC,∴∠ADC=90°,∴AC=AD=8,∵四边形EFGH是正方形,∴EH=FG=GH=EF=m,∠EHG=∠FGH=90°,∴∠AHE=∠FGC=90°,∵∠DAC=∠C=45°,∴∠AEH=∠EAH=45°,∠GFC=∠C=45°,∴AH=EH=m,CG=FG=m,∴3m=8,∴m=,∴EF=.(2)∵四边形EFGH是矩形,∵EF∥AC,∴∠DEF=∠DAC,∠DFE=∠C,∵∠DAC=∠C,∴∠DEF=∠DFE,∴DE=DF=x,DA=DC=8,∴AE=CF=8﹣x,∴EH=AE=(8﹣x),EF=DE=x,∴y===,∴y=(0<x<8).(3)如图③中,由(2)可知点P在y=上,当OP最小时,点P在第一象限的角平分线上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 2025年碳酸甲乙酯项目建设方案
- 2025年私募股权投资项目发展计划
- 陕西警官职业学院《茶艺学》2023-2024学年第二学期期末试卷
- 集美大学《数据分析与可视化工具》2023-2024学年第二学期期末试卷
- 青岛农业大学《文化与翻译(1)》2023-2024学年第一学期期末试卷
- 青岛大学《D仿真设计基础》2023-2024学年第二学期期末试卷
- 青岛恒星科技学院《卫生法规》2023-2024学年第二学期期末试卷
- 青岛港湾职业技术学院《病原生物学与免疫学(实验)》2023-2024学年第二学期期末试卷
- 青岛电影学院《公共建筑设备工程》2023-2024学年第二学期期末试卷
- 公司事故隐患内部报告奖励机制
- 凝中国心铸中华魂铸牢中华民族共同体意识-小学民族团结爱国主题班会课件
- β内酰胺类抗菌药物皮肤试验指导原则2024课件
- 全过程工程咨询管理服务方案投标方案(技术方案)
- 光储电站储能系统调试方案
- 中国传统文化-剪纸艺术智慧树知到答案2024年石河子大学
- 消防安全制度完整版
- 湖南省矢量地图课件模板(各市、区县地图-可编辑、配色)
- 医疗机构消毒记录表清洁消毒日检查记录表
- 第二单元 音乐故事 -鳟鱼 教学设计 2023-2024学年人教版初音乐九年级上册教案1000字
- 2024年农产品食品质量安全检验员技能及理论知识考试题库(附含答案)
评论
0/150
提交评论