版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第17页(共17页)2022年四川省泸州市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣=(A)A.﹣2 B. C. D.22.(3分)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为(C)A.7.55×106 B.75.5×106 C.7.55×107 D.75.5×1073.(3分)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是(C)A. B.C. D.4.(3分)如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是(B)A.30° B.40° C.50° D.70°5.(3分)下列运算正确的是(C)A.a2•a3=a6 B.3a﹣2a=1 C.(﹣2a2)3=﹣8a6 D.a6÷a2=a36.(3分)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是(D)A.35,35 B.34,33 C.34,35 D.35,347.(3分)与2+最接近的整数是(C)A.4 B.5 C.6 D.78.(3分)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是(D)A.y=﹣x2+x B.y=﹣x2﹣4 C.y=﹣x2+2021x﹣2022 D.y=﹣x2+x+19.(3分)已知关于x的方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,若(x1+1)(x2+1)=3,则m的值为(A)A.﹣3 B.﹣1 C.﹣3或1 D.﹣1或3【解答】解:∵方程x2﹣(2m﹣1)x+m2=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2,∵(x1+1)(x2+1)=x1x2+x1+x2+1=3,∴m2+2m﹣1+1=3,解得:m1=1,m2=﹣3,∵方程有两实数根,∴Δ=(2m﹣1)2﹣4m2≥0,即m≤,∴m2=1(不合题意,舍去),∴m=﹣3;故选:A.10.(3分)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是(C)A.1 B. C.2 D.4【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥AC,∴点D是AC的中点,∴OD是△ABC的中位线,∴OD∥BC,且OD=BC,设OD=x,则BC=2x,∵DE=4,∴OE=4﹣x,∴AB=2OE=8﹣2x,在Rt△ABC中,由勾股定理可得,AB2=AC2+BC2,∴(8﹣2x)2=(4)2+(2x)2,解得x=1.∴BC=2x=2.故选:C.11.(3分)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为(D)A.y=3x B.y=﹣x+ C.y=﹣2x+11 D.y=﹣2x+12【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.12.(3分)如图,在边长为3的正方形ABCD中,点E是边AB上的点,且BE=2AE,过点E作DE的垂线交正方形外角∠CBG的平分线于点F,交边BC于点M,连接DF交边BC于点N,则MN的长为(B)A. B. C. D.1【解答】解:作FH⊥BG交于点H,作FK⊥BC于点K,∵BF平分∠CBG,∠KBH=90°,∴四边形BHFK是正方形,∵DE⊥EF,∠EHF=90°,∴∠DEA+∠FEH=90°,∠EFH+∠FEH=90°,∴∠DEA=∠EFH,∵∠A=∠EHF=90°,∴△DAE∽△EHF,∴,∵正方形ABCD的边长为3,BE=2AE,∴AE=1,BE=2,设FH=a,则BH=a,∴,解得a=1;∵FM⊥CB,DC⊥CB,∴△DCN∽△FKN,∴,∵BC=3,BK=1,∴CK=2,设CN=b,则NK=2﹣b,∴,解得b=,即CN=,∵∠A=∠EBM,∠AED=∠BME,∴△ADE∽△BEM,∴,∴,解得BM=,∴MN=BC﹣CN﹣BM=3﹣﹣=,故选:B.二、填空题(本大题共4个小题,每小题3分,共12分).13.(3分)点(﹣2,3)关于原点的对称点的坐标为(2,﹣3).【解答】解:∵点M(﹣2,3)关于原点对称,∴点M(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为(2,﹣3).14.(3分)若(a﹣2)2+|b+3|=0,则ab=﹣6.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,ab=2×(﹣3)=﹣6.故答案为:﹣6.15.(3分)若方程+1=的解使关于x的不等式(2﹣a)x﹣3>0成立,则实数a的取值范围是a<﹣1.【解答】解:+1=,+=,=0,解得:x=1,∵x﹣2≠0,2﹣x≠0,∴x=1是分式方程的解,将x=1代入不等式(2﹣a)x﹣3>0,得:2﹣a﹣3>0,解得:a<﹣1,∴实数a的取值范围是a<﹣1,故答案为:a<﹣1.16.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=2,半径为1的⊙O在Rt△ABC内平移(⊙O可以与该三角形的边相切),则点A到⊙O上的点的距离的最大值为2+1.【解答】解:当⊙O与BC、BA都相切时,连接AO并延长交⊙O于点D,则AD为点A到⊙O上的点的距离的最大值,设⊙O与BC、BA的切点分别为E、F,连接OE、OF,则OE⊥BC,OF⊥AB,∵AC=6,BC=2,∴tan∠ABC==,AB==4,∴∠ABC=60°,∴∠OBF=30°,∴BF==,∴AF=AB﹣BF=3,∴OA==2,∴AD=2+1,故答案为:2+1.三、本大题共3个小题,每小题6分,共18分.17.(6分)计算:()0+2﹣1+cos45°﹣|﹣|.【解答】解:原式=1++×﹣=1++1﹣=1+1=2.18.(6分)如图,E,F分别是▱ABCD的边AB,CD上的点,已知AE=CF.求证:DE=BF.【解答】证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴DE=BF.19.(6分)化简:(+1)÷.【解答】解:原式====.四、本大题共2个小题,每小题7分,共14分.20.(7分)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:劳动时间t(单位:小时)频数0.5≤t<1121≤t<1.5a1.5≤t<2282≤t<2.5162.5≤t≤34(1)m=80,a=20;(2)若该校学生有640人,试估计劳动时间在2≤t≤3范围的学生有多少人?(3)劳动时间在2.5≤t≤3范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.【解答】解:(1)m=12÷15%=80,a=80﹣12﹣28﹣16﹣4=20;故答案为:80;20;(2)640×=160(人),所以估计劳动时间在2≤t≤3范围的学生有160人;(3)画树状图为:共有12种等可能的结果,其中一名男生和一名女生的结果数为8,所以恰好抽到一名男生和一名女生的概率==.21.(7分)某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.五、本大题共2个小题,每小题8分,共16分.22.(8分)如图,直线y=﹣x+b与反比例函数y=的图象相交于点A,B,已知点A的纵坐标为6.(1)求b的值;(2)若点C是x轴上一点,且△ABC的面积为3,求点C的坐标.【解答】解:(1)∵点A在反比例函数y=上,且A的纵坐标为6,∴点A(2,6),∵直线y=﹣x+b经过点A,∴6=﹣×2+b,∴b=9;(2)如图,设直线AB与x轴的交点为D,设点C(a,0),∵直线AB与x轴的交点为D,∴点D(6,0),由题意可得:,∴,,∴点B(4,3),∵S△ACB=S△ACD﹣S△BCD,∴3=×CD×(6﹣3),∴CD=2,∴点C(4,0)或(8,0).23.(8分)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8nmile.求B,D间的距离(计算过程中的数据不取近似值).【解答】解:由题意得,∠CAB=∠ABC=45°,BC=8nmile.∴∠C=90°,∴AB==BC=8=16(nmile),过D作DH⊥AB于H,则∠AHD=∠BHD=90°,在Rt△ADH中,∠ADH=30°,AD=10nmile,cos∠ADH=,∴AH=AD=5nmile,DH=10•cos30°=10×=5,∴BH=AB﹣AH=11nmile,在Rt△BDH中,BD===14(nmile),答:B,D间的距离是14nmile.六、本大题共2个小题,每小题12分,共24分.24.(12分)如图,点C在以AB为直径的⊙O上,CD平分∠ACB交⊙O于点D,交AB于点E,过点D作⊙O的切线交CO的延长线于点F.(1)求证:FD∥AB;(2)若AC=2,BC=,求FD的长.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∵CD平分∠ACB,∴=,∴OD⊥AB,∴AB∥DF;(2)解:过点C作CH⊥AB于点H.∵AB是直径,∴∠ACB=90°,∵BC=,AC=2,∴AB===5,∵S△ABC=•AC•BC=•AB•CH,∴CH==2,∴BH==1,∴OH=OB﹣BH=﹣1=,∵DF∥AB,∴∠COH=∠F,∵∠CHO=∠ODF=90°,∴△CHO∽△ODF,∴=,∴=,∴DF=.25.(12分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:解得:;(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,设直线AB的解析式为:y=kx+b,则,解得:,∴AB的解析式为:y=2x+4,设直线DE的解析式为:y=mx,∴2x+4=mx,∴x=,当x=3时,y=3m,∴E(3,3m),∵△BDO与△OCE的面积相等,CE⊥OC,∴•3•(﹣3m)=•4•,∴9m2﹣18m﹣16=0,∴(3m+2)(3m﹣8)=0,∴m1=﹣,m2=(舍),∴直线DE的解析式为:y=﹣x;(3)存在,B,F,G,P为顶点的四边形是以BF为一边的矩形有两种情况:设P(t,﹣t2+t+4),①如图1,过点P作PH⊥y轴于H,∵四边形BPGF是矩形,∴BP=FG,∠P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度纺织原料出口合同签订模板3篇
- 二零二五年度农村房屋买卖版合同规范文本
- 二零二五年度全新出售房屋买卖智能锁更换合同3篇
- 二零二五年度农村土地流转合同:生态农业示范项目用地协议2篇
- 2024年沧州市传染病医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2025年度智能广告投放系统服务合同3篇
- 二零二五农村水井租赁与农村水利设施改造合同
- 2024年中国洗面奶市场调查研究报告
- 2024年中国汽车油漆电脑调色机市场调查研究报告
- 2025年度消防工程设计咨询与劳务分包服务协议3篇
- 2023-2024学年仁爱版七上期末考试英语(试题)
- 无人机表演服务合同
- 呼吸内科临床诊疗指南及操作规范
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 世界职业院校技能大赛高职组“关务实务组”赛项参考试题及答案
- 高中历史教师资格考试面试试题及解答参考(2024年)
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 2024年理论中心组学习心得体会模版(2篇)
- 浙江省杭州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 环保行业工业废气污染防治技术路线方案
评论
0/150
提交评论