




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滨州市信阳中学2022-2023学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.两个等差数列和,其前项和分别为,且则等于A.
B.
C.
D.参考答案:D2.如果执行如图所示的程序,那么输出的值k=(
)A.3 B.4 C.5 D.6参考答案:B【考点】程序框图.【专题】计算题;图表型;分类讨论;试验法;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的S,k的值,当S=2059时不满足条件S<100,退出循环,输出k的值为4.【解答】解:模拟执行程序框图,可得k=0,S=0满足条件S<100,S=0+1=1,k=1满足条件S<100,S=1+2=3,k=2满足条件S<100,S=3+8=11,k=3满足条件S<100,S=11+211=2059,k=4不满足条件S<100,退出循环,输出k的值为4.故选:B.【点评】本题主要考查了循环结构的程序框图,属于基本知识的考查.3.在平面几何里有射影定理:设三角形的两边,是点在边上的射影,则.拓展到空间,在四面体中,平面,点是点在平面内的射影,且在内,类比平面三角形射影定理,得出正确的结论是(
)A.
B.
C.
D.参考答案:A由已知在平面几何中,若△ABC中,AB⊥AC,AE⊥BC,E是垂足,则AB2=BD?BC,我们可以类比这一性质,推理出:若三棱锥A﹣BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则(S△ABC)2=S△BOC.S△BDC.故选A.
4.设条件,条件;那么的(
)A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件参考答案:C5.已知定义在上函数是可导的,,且,则不等式的解集是(
)(注:为自然对数的底数)A.
B.
C.
D.参考答案:A设,则,因为,由已知可得,,即函数是单调减函数,,故,即,则有,6.已知复数z满足,则z的实部(
)A.不大于0 B.不小于0C.大于0 D.小于0参考答案:A【分析】设,由,利用复数的模可得,根据复数相等可得,解得即可.【详解】解:设,,,,解得,.的实部不大于0.故选:A.【点睛】本题考查复数的模的计算公式、复数相等的充要条件,属于基础题.
7.复数,则它的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:C试题分析:复数的共轭复数为,在复平面内对应点的坐标为,所以位于第三象限。选C考点:复数的概念及运算8.双曲线的渐近线与圆相切,则(
)A.
B.2
C.3
D.6参考答案:A9.已知函数f(x)在(﹣1,1)上既是奇函数,又是减函数,则满足f(1﹣x)+f(3x﹣2)<0的x的取值范围是()A.(,+∞) B.(,1) C.(,+∞) D.(,1)参考答案:B【考点】奇偶性与单调性的综合.【分析】直接利用函数的单调性以及奇偶性化简求解即可.【解答】解:函数f(x)在(﹣1,1)上既是奇函数,又是减函数,f(1﹣x)+f(3x﹣2)<0,可得f(3x﹣2)<f(x﹣1),可得,解得:x∈.故选:B.10.下列命题为特称命题的是
(
)A.偶函数的图像关于y轴对称
B.正四棱柱都是平行六面体C.不相交的两条直线是平行直线
D.存在实数大于等于3参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知集合,集合,且,则___________.参考答案:012.已知{an}是公差为d的等差数列,a1=1,如果a2?a3<a5,那么d的取值范围是.参考答案:【考点】等差数列的性质.【分析】利用等差数列的通项公式,结合a2?a3<a5,得到d的关系式,求出d的范围即可.【解答】解:{an}是公差为d的等差数列,a1=1,∵a2?a3<a5,∴(1+d)(1+2d)<1+4d,即2d2﹣d<0,解得d.故答案为:.13.椭圆(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是
.参考答案:[,1)【考点】椭圆的简单性质.【分析】如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,即可,【解答】解:如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,tan∠F1AO=,故椭圆离心率的取范围是[,1)故答案为[,1)14.复数的值是
.参考答案:0【考点】复数代数形式的混合运算.【专题】计算题.【分析】先利用两个复数的除法法则求出,再由虚数单位i的幂运算性质求出i3的值,从而可求所求式子的值.【解答】解:复数=﹣i=﹣i=0.故答案为0.【点评】本题考查两个复数乘除法的运算法则的应用,以及虚数单位i的幂运算性质的应用.15.若△ABC三边长分别为a、b、c,内切圆的半径为r,则△ABC的面积,类比上述命题猜想:若四面体ABCD四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,则四面体ABCD的体积V=.参考答案:r(S1+S2+S3+S4)【考点】F3:类比推理.【分析】利用等体积进行推导即可.【解答】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.∴V=(S1+S2+S3+S4)r.故答案为:(S1+S2+S3+S4)r.16.已知空间三点A(1,1,1)、B(﹣1,0,4)、C(2,﹣2,3),则与的夹角θ的大小是.参考答案:120°【考点】用空间向量求直线间的夹角、距离.【分析】先分别求出与的坐标,再根据空间两向量夹角的坐标公式求出它们的夹角的余弦值,从而求出与的夹角θ.【解答】解:=(﹣2,﹣1,3),=(﹣1,3,﹣2),cos<,>===﹣,∴θ=<,>=120°.故答案为120°【点评】本题主要考查了用空间向量求直线间的夹角、距离,考查空间想象能力,属于基础题.17.不等式
解集为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列的前项和为,且,求证数列为等比数列,并求其通项公式参考答案:解析:由可知
两式相减可得,
即,故数列数列为等比数列。又
·w.w.w.k.s.5.u.c.o.m
19.某工厂有一批货物由海上从甲地运往乙地,已知轮船的最大航行速度为60海里/小时,甲地至乙地之间的海上航行距离为600海里,每小时的运输成本由燃料费和其他费用组成,轮船每小时的燃料费与轮船速度的平方成正比,比例系数为0.5,其余费用为每小时1250元。(Ⅰ)把全程运输成本(元)表示为速度(海里/小时)的函数;(Ⅱ)为使全程运输成本最小,轮船应以多大速度行驶?参考答案:略20.过椭圆Γ:+=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.(Ⅰ)求椭圆Γ的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且⊥?若存在,求出该圆的方程;若不存在,请说明理由.参考答案:【考点】直线与圆锥曲线的关系;椭圆的标准方程.【分析】(Ⅰ)由题意列关于a,c的方程组,求解方程组的a,c的值,由b2=a2﹣c2求得b的值,则椭圆方程可求;(Ⅱ)假设满足条件的圆存在,设出圆的方程,分直线PQ的斜率存在和不存在讨论,当直线PQ的斜率存在时,设其方程为y=kx+t,和椭圆方程联立后化为关于x的一元二次方程,利用根与系数关系求出P,Q两点横纵坐标的积,由⊥得其数量积等于0,代入坐标的乘积得到k和t的关系,再由圆心到直线的距离等于半径求出圆的半径,然后验证直线斜率不存在时成立.从而得到满足条件的圆存在.【解答】解:(Ⅰ)由已知,得,解得:,∴b2=a2﹣c2=4﹣3=1.故椭圆Γ的方程为;(Ⅱ)假设满足条件的圆存在,其方程为x2+y2=r2(0<r<1).当直线PQ的斜率存在时,设其方程为y=kx+t,由,得(1+4k2)x2+8ktx+4t2﹣4=0.设P(x1,y1),Q(x2,y2),则,①∵,∴x1x2+y1y2=0,又y1=kx1+t,y2=kx2+t,∴x1x2+(kx1+t)(kx2+t)=0,即(1+k2)x1x2+kt(x1+x2)+t2=0.
②将①代入②,得,即t2=(1+k2).∵直线PQ与圆x2+y2=r2相切,∴r==∈(0,1),∴存在圆x2+y2=满足条件.当直线PQ的斜率不存在时,易得=,代入椭圆Γ的方程,得=,满足.综上所述,存在圆心在原点的圆x2+y2=满足条件.21.如图所示,PA为0的切线,A为切点,PBC是过点O的割线,PA=10,PB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学生禁毒教育
- 疫情防控大会课件
- 艺术节活动组织与实施计划
- 公司场地授权使用合同标准文本
- 全款买房合同标准文本
- a轮融资协议合同标准文本
- 绘画技法教学步骤示范计划
- 企业厂房转让合同标准文本
- 上下铺房转租合同标准文本
- 企业采购红酒合同标准文本
- 2024年GCP考试题库(黄金题型)
- DB11∕T344-2024陶瓷砖胶粘剂施工技术规程
- 2025年公共管理复试试题及答案
- 2025年过氧化工艺证考试题及答案
- 2024年凤凰出版传媒集团秋季招聘笔试参考题库附带答案详解
- 2025年中考语文名著阅读考点演练《经典常谈》:选择性阅读(八年级下) 答案版
- 2025年中央一号文件参考试题库100题(含答案)
- 公司金融(对外经济贸易大学)知到智慧树章节测试课后答案2024年秋对外经济贸易大学
- 财务共享与创新案例分析课件
- 2024临床输血指南
- 2025年度洗车服务与车辆检测中心合作承包合同3篇
评论
0/150
提交评论