我的读书笔记(一):数据信息中的相似度计算算法_第1页
我的读书笔记(一):数据信息中的相似度计算算法_第2页
我的读书笔记(一):数据信息中的相似度计算算法_第3页
我的读书笔记(一):数据信息中的相似度计算算法_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

我的读书笔记(一):数据信息中的相似度计算算法无意中发现这本貌似不错的书MiningofMassiveDatasets,随便记一下学到的东西。因为对数据挖掘没什么研究,理解肯定很肤浅,请过往大牛指教。下面内容来自此书第三章的前面部分。在数据挖掘中经常需要用到比较两个东西的相似度。比如搜索引擎要避免非常相似的文档出现在结果的前几页,再比如很多网站上都有的''查找与你口味相似的用户〃、“你可能喜欢什么什么〃之类的功能。后者其实是很大的一块叫做''协同过滤〃的研究领域,留待以后详谈。首先我们定义两个集合S,T的Jaccard相似度:Sim(S,T)=|S,T的交集|/|S,T的并集|。直观上就容易感觉出这是一个很简单而且比较合理的度量,我不清楚有没有什么理论上的分析,在此省略。下面先主要说一下文档的相似度。如果是判断两个文档是否完全相同,问题就变得很简单,只要简单地逐字符比较即可。但是在很多情况下并不是这样,比如网站文章的转载,主体内容部分是相同的,但是不同网页本身有自己的Logo、导航栏、版权声明等等,不能简单地直接逐字符比较。这里有一个叫做Shingling的方法,其实说起来很土,就是把每相邻的k个字符作为一个元素,这样整篇文档就变成了一个集合。比如文档是"banana",若k=2,转化以后得到集合为{"ba","an","na"},于是又变成了前述集合相似度的问题。关于k值的设置,显然过小或过大都不合适,据说比较短的比如email之类可以设k=5,比如长的文章如论文之类可以设k=9。当然,这是一个看上去就很粗糙的算法,这里的相似度比较只是字符意义上的,如果想进行语义上的比较就不能这么简单了(我觉得肯定有一摞摞的paper在研究这个)。不过同样可以想见的是,在实际中这个粗糙算法肯定表现得不坏,速度上更是远优于复杂的NLP方法。在实际工程中,必然糙快猛才是王道。有一点值得注意的是,Shingling方法里的k值比较大时,可以对每个片段进行一次hash。比如k=9,我们可以把每个9字节的片段hash成一个32bit的整数。这样既节省了空间又简化了相等的判断。这样两步的方法和4-shingling占用空间相同,但是会有更好的效果。因为字符的分布不是均匀的,在4-shingling中实际上大量的4字母组合没有出现过,而如果是9-shingling再hash成4个字节就会均匀得多。在有些情况下我们需要用压缩的方式表示集合,但是仍然希望能够(近似)计算出集合之间的相似度,此时可用下面的Minhashing方法。首先把问题抽象一下,用矩阵的每一列表示一个集合,矩阵的行表示集合中所有可能的元素。若集合c包含元素r,则矩阵中c列r行的元素为1否则为0。这个矩阵叫做特征矩阵,往往是很稀疏的。以下设此矩阵有R行C列。所谓minhash是指把一个集合(即特征矩阵的一列)映射为一个0..R-1之间的值。具体方法是,以等概率随机抽取一个0..R-1的排列,依此排列查找第一次出现1的行。例如有集合S1={a,d},S2={c},S3={b,d,e},S4={a,c,d},特征矩阵即如下SIS2S3S4TOC\o"1-5"\h\z0a10011b00102c01013d10114e0010设随机排列为43201(edcab),按edcab的顺序查看S1列,发现第一次出现1的行是d(即第3行),所以h(S1)=3,同理有h(S2)=2,h(S3)=4,h(S4)=3。此处有一重要而神奇的结论:对于等概率的随机排列,两个集合的minhash值相同的概率等于两个集合的Jaccard相似度。证明:同一行的两个元素的情况有三种:X■两者都为1;Y■—个1一个0;乙两者都为0。易知Jaccard相似度为|X|/(|X|+|Y|)。另一方面,若排列是等概率的,则第一个出现的X中元素出现在Y中元素之前的概率也为|X|/(|X|+|Y|),而只有这种情况下两集合的minhash值相同。于是方法就有了,我们多次抽取随机排列得到n个minhash函数hl,h2,…,hn,依此对每一列都计算n个minhash值。对于两个集合,看看n个值里面对应相等的比例,即可估计出两集合的Jaccard相似度。可以把每个集合的n个minhash值列为一列,得到一个n行C列的签名矩阵。因为n可远小于R,这样我们就把集合压缩表示了,并且仍能近似计算出相似度。在具体的计算中,可以不用真正生成随机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论