



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省日照市第六高级中学高三数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列函数中,不满足的是 ()A. B. C. D.参考答案:C略2.已知是虚数单位,则在复平面中复数对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A略3.已知向量,实数m,n满足,则的最大值为
A.2
B.4
C.8
D.16参考答案:D4.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则a<b的概率为()参考答案:D略5.在△中,是的(
)A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:C【知识点】平面向量的数量积及其应用;充分条件必要条件解析:因为在△ABC中?=?等价于?﹣?=0等价于?(+)=0,因为的方向为AB边上的中线的方向.即AB与AB边上的中线相互垂直,则△ABC为等腰三角形,故AC=BC,即,所以为充分必要条件.故选C.【思路点拨】首先在△ABC中,移项化简可得到=0,所表示的意义为AB与AB边上的中线相互垂直,故,所以是充分条件,又,得三角形为等腰三角形,则可推出也成立.所以是充分必要条件.6.椭圆中,为右焦点,为上顶点,为坐标原点,直线交椭圆于第一象限内的点,若,则椭圆的离心率等于(
)A.
B.
C. D.参考答案:A7.已知满足不等式,则函数取得最小值是(A)6(B)9(C)14(D)15参考答案:A8.南宋数学家秦九韶在《数书九章》中提出的秦九韶,算法至今仍是多项式求值比较先进的算法.已知,下列程序框图设计的是求的值,在“”中应填的执行语句是(
)A.
B.
C.
D.参考答案:C初始值该程序的计算方式:第一步:计算,空白处的结果应为;第二步:计算,空白处的结果应为;综合分析可得:空白处应填,故选C.
9.一个几何体的三视图及其尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,则这个几何体的表面积为(
)(A) (B)(C) (D)参考答案:B还原为立体图形是半个圆锥,侧面展开图为扇形的一部分,计算易得。10.已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩?UB=()A.{3} B.{2,5} C.{1,4,6} D.{2,3,5}参考答案:B【考点】1H:交、并、补集的混合运算.【分析】求出集合B的补集,然后求解交集即可.【解答】解:全集U={1,2,3,4,5,6},集合B={1,3,4,6},?UB={2,5},又集合A={2,3,5},则集合A∩?UB={2,5}.故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.已知某几何体的三视图如图所示,这该几何体的体积为▲
,表面积为▲
.参考答案:,
12.已知函数f(x)=,则f(f(x))=
.参考答案:1【考点】函数的值.【分析】根据函数的不等式代入即可.【解答】解:若x≥0,则f(x)=1,则f(f(x))=f(1)=1,若x<0,则f(x)=0,则f(f(x))=f(0)=1,故答案为:113.已知函数,若,且,则的最小值是
参考答案:-16略14.在中,角A,B,C新对的边分别为a,b,c,若,,则角B=____----____.参考答案:15.已知一正四棱柱(底面为正方形的直四棱柱)内接于底面半径为1,高为2的圆锥,当正四棱柱体积最大时,该正四棱柱的底面边长为参考答案:【分析】根据内接关系作出截面图,建立正四棱柱和圆锥之间的关系,从而可求.【详解】设正四棱柱的底面边长为,高为,如图由题意可得解得,正四棱柱的体积为,,当时,,为增函数;当时,,为减函数;所以当时,正四棱柱体积最大,此时正四棱柱的底面边长为.【点睛】本题主要考查组合体的内接问题,体积最大值的确定要根据目标式的特征来选择合适的方法,侧重考查直观想象的核心素养.16.在△ABC中,B(10,0),直线BC与圆Γ:x2+(y-5)2=25相切,切点为线段BC的中点.若△ABC的重心恰好为圆Γ的圆心,则点A的坐标为
.参考答案:【答案解析】(0,15)或(-8,-1)解析:由已知得过点B与圆相切的切线长为10,则以B为圆心,切线长为半径的圆的方程为与已知圆的方程联立解得切点坐标为(0,0)或(4,8),所以C点坐标为(-10,0)或(-2,16),又已知圆心坐标为(0,5)设A点坐标为(x,y),利用三角形重心坐标公式得A点坐标为(0,15)或(-8,-1).【思路点拨】本题的关键是先求切点坐标,可转化为两圆的交点问题,联立方程求切点坐标.17.命题“”的否定是_____参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)已知函数(Ⅰ)当时,求函数的极大值和极小值;(Ⅱ)当时,恒成立,求的取值范围.参考答案:19.(本小题满分15分)已知抛物线的焦点为,是抛物线上横坐标为4、且位于轴上方的点,到抛物线准线的距离等于5.过作垂直于轴,垂足为,的中点为.(1)求抛物线方程;(2)过作,垂足为,求点的坐标;(3)以为圆心,为半径作圆,当是轴上一动点时,讨论直线与圆的位置关系.参考答案:解:(1)抛物线∴抛物线方程为y2=4x.(2)∵点A的坐标是(4,4),由题意得B(0,4),M(0,2),又∵F(1,0),∴则FA的方程为y=(x-1),MN的方程为解方程组(3)由题意得,圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离,当m≠4时,直线AK的方程为
即为圆心M(0,2)到直线AK的距离,令时,直线AK与圆M相离;
当m=1时,直线AK与圆M相切;
当时,直线AK与圆M相交.略20.(1)已知,求的值;(2)已知,求的值.参考答案:(1);(2).【分析】(1)根据求出,再计算得;(2)根据诱导公式求值。【详解】(1)由题得.(2),所以.【点睛】本题考查三角函数的基本运算和诱导公式求值。21.在直角坐标系xOy中,直线l的参数方程为,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出直线l的普通方程及圆C的直角坐标方程;(2)点P是直线l上的,求点P的坐标,使P到圆心C的距离最小.参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)由已知得t=x﹣3,从而y=,由此能求出直线l的普通方程;由,得,由此能求出圆C的直角坐标方程.(2)圆C圆心坐标C(0,),设P(3+t,),由此利用两点间距离公式能求出点P的坐标,使P到圆心C的距离最小.【解答】解:(1)∵在直角坐标系xOy中,直线l的参数方程为,∴t=x﹣3,∴y=,整理得直线l的普通方程为=0,∵,∴,∴,∴圆C的直角坐标方程为:.(2)圆C:的圆心
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专用施工合同范本模板
- 会展投资合同范本
- 农村土方 工程合同范本
- 化工产品营销合同范本
- Starter Section 3 Saying Hello 教学设计2024-2025学年北师大版(2024)七年级英语上册
- 企业质押合同范本
- 供车协议合同范本
- 2024年宁波市消防救援支队社会招录政府专职消防员考试真题
- 2024年南平市建阳区社会统一教师招聘考试真题
- 劳动派遣居间合同范本
- 课题优秀申报书课题申报书范例
- 外贸客户报价单中英文格式模板
- 《金融学讲义》word版
- 给排水管道施工组织设计
- 湖南教育学会版信息技术六年级下册教案(6课)
- 2022年四川省泸州市中考语文试题
- JJF 1338-2012相控阵超声探伤仪校准规范
- GB/T 14643.2-2009工业循环冷却水中菌藻的测定方法第2部分:土壤菌群的测定平皿计数法
- GB 29415-2013耐火电缆槽盒
- 媒介经营与管理-课件
- 2022年四川甘孜州州属事业单位考调工作人员冲刺卷贰(3套)答案详解
评论
0/150
提交评论