




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.2.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形4.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣35.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为万元B.污改造完成后每月利润比前一个月增加万元C.治污改造完成前后共有个月的利润低于万元D.9月份该厂利润达到万元6.在中,,若,则的值为()A. B. C. D.7.如图,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()A. B. C. D.8.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为()A. B.C. D.9.如图,若二次函数的图象的对称轴为,与x轴的一个交点为,则:①二次函数的最大值为;②;③当时,y随x的增大而增大;④当时,,其中正确命题的个数是()A.1 B.2 C.3 D.410.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=111.若x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,则1+a+b的值是()A.2017 B.2018 C.2019 D.202012.在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是().A.3 B.4 C.6 D.8二、填空题(每题4分,共24分)13.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.14.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号小于4的概率为_____.15.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.16.如果一元二次方程经过配方后,得,那么a=________.17.如图,在中,,点D、E分别在边、上,且,如果,,那么________.18.如图等边三角形内接于,若的半径为1,则图中阴影部分的面积等于_________.三、解答题(共78分)19.(8分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为______;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.(8分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数方差中位数甲7①.7乙②.5.4③.(1)请将右上表补充完整:(参考公式:方差)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.21.(8分)如图,反比例函数的图象与一次函数的图象相交于点和点.(1)求反比例函数的解析式和点的坐标;(2)连接,,求的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量的取值范围.22.(10分)某商家在购进一款产品时,由于运输成本及产品成本的提高,该产品第天的成本(元/件)与(天)之间的关系如图所示,并连续50天均以80元/件的价格出售,第天该产品的销售量(件)与(天)满足关系式.(1)第40天,该商家获得的利润是______元;(2)设第天该商家出售该产品的利润为元.①求与之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在出售该产品的过程中,当天利润不低于1000元的共有多少天?23.(10分)如图,在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,在这个直角三角形内有一个内接正方形,正方形的一边FG在BC上,另两个顶点E、H分别在边AB、AC上.(1)求BC边上的高;(2)求正方形EFGH的边长.24.(10分)如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?25.(12分)如图,有一直径是20厘米的圆型纸片,现从中剪出一个圆心角是90°的扇形ABC.(1)求剪出的扇形ABC的周长.(2)求被剪掉的阴影部分的面积.26.如图①,若抛物线的顶点在抛物线上,抛物线的顶点在抛物线上,(点与点不重合),我们把这样的两条抛物线和,互称为“友好”抛物线.(1)一条抛物线的“友好”抛物线有条;(2)如图②,已知抛物线与轴相交于点,点关于抛物线的对称轴的对称点为点,求以点为顶点的的“友好”抛物线的表达式;(3)若抛物线的“友好”抛物线的解析式为,请直接写出与的关系式.
参考答案一、选择题(每题4分,共48分)1、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.2、D【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.3、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.4、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【详解】A.2x+y=1是二元一次方程,故不正确;B.x2+1=2xy是二元二次方程,故不正确;C.x2+=3是分式方程,故不正确;D.x2=2x-3是一元二次方程,故正确;故选:D5、C【分析】首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为根据题意,图像过点(1,200),则可得出当时,,即4月份的利润为万元,A选项正确;设一次函数解析式为根据题意,图像过点(4,50)和(6,110)则有解得∴一次函数解析式为,其斜率为30,即污改造完成后每月利润比前一个月增加万元,B选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、万元、50万元、110万元,共有3个月的利润低于万元,C选项错误;9月份的利润为万元,D选项正确;故答案为C.【点睛】此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.6、C【分析】根据特殊角的三角函数值求出∠B,再求∠A,即可求解.【详解】在中,,若,则∠B=30°故∠A=60°,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.7、D【解析】水杯的杯口与投影面平行,即与光线垂直,则它的正投影图有圆形.【详解】解:依题意,光线是垂直照下的,它的正投影图有圆形,只有D符合,故选:D.【点睛】本题考查正投影的定义及正投影形状的确定.8、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:∵矩形ABCD的面积为1,∴,∵B、D为线段EF的三等分点,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四边形ABCD是矩形,∴,∵,,∴,,又∵,∴四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,∴,∴又∵,即,∴,∴直线EF的解析式为,令,得,令,即,解得,∴,,∵F点在轴的上方,∴,∴,,∵,即,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.9、B【分析】①根据二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式即可得;②根据时,即可得;③根据二次函数的图象即可知其增减性;④先根据二次函数的对称性求出二次函数的图象与x轴的另一个交点坐标,再结合函数图象即可得.【详解】由二次函数的图象可知,时,二次函数取得最大值,将代入二次函数的解析式得:,即二次函数的最大值为,则命题①正确;二次函数的图象与x轴的一个交点为,,则命题②错误;由二次函数的图象可知,当时,y随x的增大而减小,则命题③错误;设二次函数的图象与x轴的另一个交点为,二次函数的对称轴为,与x轴的一个交点为,,解得,即二次函数的图象与x轴的另一个交点为,由二次函数的图象可知,当时,,则命题④正确;综上,正确命题的个数是2,故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、增减性、最值)等知识点,熟练掌握二次函数的图象与性质是解题关键.10、B【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为1的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程1x+1=0中未知数的最高次数不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一个未知数,且未知数的最高次数为1的整式方程,故是一元二次方程;C、方程y1+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.是否符合定义的条件是作出判断的关键.11、D【分析】根据x=-1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,可以得到a+b的值,从而可以求得所求式子的值.【详解】解:∵x=﹣1是关于x的一元二次方程ax2﹣bx﹣2019=0的一个解,∴a+b﹣2019=0,∴a+b=2019,∴1+a+b=1+2019=2020,故选:D.【点睛】本题考查一元二次方程的解,解答本题的关键是明确题意,求出所求式子的值.12、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解】由题意得:12×=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(每题4分,共24分)13、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【点睛】本题考查扇形面积,解题的关键是掌握扇形面积公式.14、【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:标号小于4的有1,2,3三个球,共5个球,任意摸出1个,摸到标号小于4的概率是.故答案为:【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.15、【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.16、-6【解析】∵,∴,∴a=-6.17、【分析】根据,,得出,利用相似三角形的性质解答即可.【详解】∵,,∴,∴,即,∴,∵,∴,故答案为【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.18、【分析】如图(见解析),连接OC,根据圆的内接三角形和等边三角形的性质可得,的面积等于的面积、以及的度数,从而可得阴影部分的面积等于钝角对应的扇形面积.【详解】如图,连接OC由圆的内接三角形得,点O为垂直平分线的交点又因是等边三角形,则其垂直平分线的交点与角平分线的交点重合,且点O到AB和AC的距离相等则故答案为:.【点睛】本题考查了圆的内接三角形的性质、等边三角形的性质、扇形面积公式,根据等边三角形的性质得出的面积等于的面积是解题关键.三、解答题(共78分)19、(1)画图见解析;(2);(3).【解析】试题分析:(1)根据网格结构找出点A、B绕点O逆时针旋转90°后的对应点A1、B1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA,再根据AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OB求解,再求出BO扫过的面积=S扇形B1OB,然后计算即可得解.试题解析:(1)△A1OB1如图所示;(2)由勾股定理得,BO=,所以,点B所经过的路径长=(3)由勾股定理得,OA=,∵AB所扫过的面积=S扇形A1OA+S△A1B1O-S扇形B1OB-S△AOB=S扇形A1OA-S扇形B1OBBO扫过的面积=S扇形B1OB,∴线段AB、BO扫过的图形的面积之和=S扇形A1OA-S扇形B1OB+S扇形B1OB,=S扇形A1OA,=考点:1.作图-旋转变换;2.勾股定理;3.弧长的计算;4.扇形面积的计算.20、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析【分析】(1)根据方差公式直接计算即可得出甲的方差,然后根据折线图信息进一步分析即可求出乙的平均数以及中位数;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;(3)根据甲乙二人成绩的相关数据结合实际进一步分析比较即可.【详解】(1)①甲的方差为:,②乙的平均数为:,③乙的中位数为:,故答案为:①1.2;②7;③7.5;(2)①甲乙平均数相同,而甲的方差要小,所以甲的成绩更加稳定,从而得出甲的成绩好一些;②甲乙平均数相同,而乙的中位数较大,即乙的成绩的中间量较大,所以得出乙的成绩好一些;故答案为:①甲;②乙;(3)选乙,理由如下:综合看,甲发挥更稳定,但射击精准度差;乙发挥虽然不稳定,但击中高靶环次数更多,成绩逐步上升,提高潜力大,更具有培养价值,所以应选乙.【点睛】本题考查了折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,折线统计图能清楚地看出数据的变化情况.21、(1),点的坐标为;(2);(3)或.【分析】(1)利用待定系数法求解析式,令y值相等求点B坐标;(2)数形结合求面积;(3)数形结合,利用图像解不等式【详解】解:(1)把代入得,∴.∴反比例函数的解析式为.联立解得∴点的坐标为.(2)设直线与轴交于点.可知点的坐标为,∴.∴.(3)当或时,反比例函数值小于一次函数值.【点睛】本题考查了反比例函数和一次函数的综合应用,数形结合思想是解题的关键22、(1)1000(2)①,25,1225;②1.【分析】(1)根据图象可求出BC的解析式,即可求出第40天时的成本为60元,此时的产量为z=40+10=50,则可求得第40天的利润;(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)根据图象得,B(20,40),C(50,70),设BC的解析式为y=kx+b,把B(20,40),C(50,70)代入得,,解得,,所以,直线BC的解析式为:y=x+20,当x=40时,y=60,即第40天时该产品的成本是60元/件,利润为:80-60=20(元/件)此时的产量为z=40+10=50件,则第40天的利润为:20×50=1000元故答案为:1000(2)①当时,,∴时,元;当时,,∴时,元;综上所述,当时,元②当时,若元,则(天),第15天至第20天的利润都不低于1000元;当时,若元,则(舍去)(天),所以第21天至第40天的利润都不低于1000元,则总共有1天的利润不低于1000元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23、(1)12cm;(2)【分析】(1)由勾股定理求出BC=25cm,再由三角形面积即可得出答案;(2)设正方形边长为x,证出△AEH∽△ABC,得出比例式,进而得出答案.【详解】解:(1)作AD⊥BC于D,交EH于O,如图所示:∵在Rt△ABC中,∠A=90°,AB=20cm,AC=15cm,∴BC==25(cm),∵BC×AD=AB×AC,∴AD===12(cm);即BC边上的高为12cm;(2)设正方形EFGH的边长为xcm,∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.∴=,即=,解得:x=,即正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- otc活动策划方案(3篇)
- 中职食堂饭菜管理方案(3篇)
- 媒介投放规划方案(3篇)
- DB23-T2901-2021-草原草本植物标本制作技术规程-黑龙江省
- 公司市场人员管理制度
- 公司员工信息管理制度
- 城市管线普查方案(3篇)
- 寄递物流管理管理制度
- 宾馆用电安全管理制度
- 农村超市收购方案(3篇)
- 2022年四川省南充市中考英语真题(含答案)
- JJG 646-2006移液器
- PPT用中国地图(可编辑)
- 医院日间手术实施方案(试行)
- 《戏剧鉴赏》专题教学课件
- 卫生法律制度与监督学考核试题及答案
- 二年级语文下册课件-语文园地二8-部编版(共15张PPT)
- 高血压病人的护理(PPT)
- JJF(建材)123-2021 行星式胶砂搅拌机校准规范-(高清现行)
- 马士基提单样单格式
- DB34T 3944-2021 静力触探应用技术规程
评论
0/150
提交评论