




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.2.若点,,在反比例函数的图像上,则的大小关系是()A. B. C. D.3.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.4.如图是拦水坝的横断面,,斜面坡度为,则斜坡的长为()A.米 B.米 C.米 D.24米5.一元二次方程x2﹣4x=0的根是()A.x1=0,x2=4 B.x1=0,x2=﹣4 C.x1=x2=2 D.x1=x2=46.已知⊙O的半径为3cm,线段OA=5cm,则点A与⊙O的位置关系是()A.A点在⊙O外 B.A点在⊙O上 C.A点在⊙O内 D.不能确定7.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.8.我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是()A. B. C. D.9.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°10.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.411.如图,,垂足为点,,,则的度数为()A. B. C. D.12.关于x的一元二次方程x2+2x﹣a=0的一个根是1,则实数a的值为()A.0 B.1 C.2 D.3二、填空题(每题4分,共24分)13.飞机着陆后滑行的距离y(m)与滑行时间x(s)的函数关系式为y=﹣x2+60x,则飞机着陆后滑行_____m才停下来.14.如图,绕着点顺时针旋转得到,连接,延长交于点,若,则的长为__________.15.如图,在等腰直角三角形中,,点在轴上,点的坐标为(0,3),若点恰好在反比例函数第一象限的图象上,过点作轴于点,那么点的坐标为__________.16.质检部门为了检测某品牌电器的质量,从同一批次共10000件产品中随机柚取100件进行检测,检测出次品5件,由此估计这一批产品中的次品件数是_____.17.如图,圆的直径垂直于弦,垂足是,,,的长为__________.18.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.三、解答题(共78分)19.(8分)(1)3tan30°-tan45°+2sin60°(2)20.(8分)某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间具有某种函数关系,其对应规律如下表所示售价x(元/本)…222324252627…销售量y(件)…363432302826…(1)请直接写出y与x的函数关系式:.(2)设该文店每周销售这种纪念册所获得的利润为W元,写出W与x之间的函数关系式,并求出该纪念册的销售单价定为多少元时,才能使文具店销售该纪念册每周所获利润最大?最大利润是多少?21.(8分)解方程(1)x2+4x﹣3=0(用配方法)(2)3x(2x+3)=4x+622.(10分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.23.(10分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;(1)求证:△ABE∽△EGB;(2)若AB=4,求CG的长.24.(10分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.25.(12分)如图,点为上一点,点在直径的延长线上,且,过点作的切线,交的延长线于点.判断直线与的位置关系,并说明理由;若,求:①的半径,②的长.26.如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.
参考答案一、选择题(每题4分,共48分)1、B【分析】画出树状图,根据概率公式即可求得结果.【详解】画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是.故选:B.【点睛】本题考查随机事件的概率计算,关键是要熟练应用树状图,属基础题.2、C【解析】根据点A、B、C分别在反比例函数上,可解得、、的值,然后通过比较大小即可解答.【详解】解:将A、B、C的横坐标代入反比函数上,得:y1=-6,y2=3,y3=2,所以,;故选C.【点睛】本题考查了反比例函数的计算,熟练掌握是解题的关键.3、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.4、B【解析】根据斜面坡度为1:2,堤高BC为6米,可得AC=12m,然后利用勾股定理求出AB的长度.【详解】解:∵斜面坡度为1:2,BC=6m,∴AC=12m,则,故选B.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解.5、A【分析】把一元二次方程化成x(x-4)=0,然后解得方程的根即可选出答案.【详解】解:∵一元二次方程x2﹣4x=0,∴x(x-4)=0,∴x1=0,x2=4,故选:A.【点睛】本题考查了解一元二次方程,熟悉解一元二次方程的方法是解题的关键.6、A【详解】解:∵5>3∴A点在⊙O外故选A.【点睛】本题考查点与圆的位置关系.7、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.8、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可.【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式,,∴;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键.9、A【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.10、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的11、B【解析】由平行线的性质可得,继而根据垂直的定义即可求得答案.【详解】,,,,∴∠BCE=90°,∴∠ACE=∠BCE-∠ACB=90°-40°=50°,故选B.【点睛】本题考查了垂线的定义,平行线的性质,熟练掌握相关知识是解题的关键.12、D【分析】方程的解就是能使方程左右两边相等的未知数的值,把x=1代入方程,即可得到一个关于a的方程,即可解得实数a的值;【详解】解:由题可知,一元二次方程x2+2x﹣a=0的一个根是1,将x=1代入方程得,,解得a=3;故选D.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的解是解题的关键.二、填空题(每题4分,共24分)13、600【分析】根据飞机从滑行到停止的路程就是滑行的最大路程,即是求函数的最大值.【详解】解:∵y=﹣x2+60x=﹣(x﹣20)2+600,∴x=20时,y取得最大值,此时y=600,即该型号飞机着陆后滑行600m才能停下来.故答案为600.【点睛】本题主要考查了二次函数的应用,运用二次函数求最值问题常用公式法或配方法得出是解题关键.14、【分析】根据题意延长交于点,则,延长交于点,根据已知可以得到CC´,B´C´,BF,B´F;求出,∵△MEC´∽△BEC,得到求出CE即可.【详解】Rt△ABC绕着点顺时针旋转得到,.又.如图,延长交于点,则,延长交于点,则.,,即,解得,∵△MEC´∽△BEC,,,解得∴CE=CC´+EC´=3+=【点睛】此题主要考查了旋转变化的性质和特征,相似三角形的性质,熟记性质是解题的关键,注意相似三角形的选择.15、(5,2)【分析】由∠BAC=90°,可得△ABO≌△CAD,利用全等三角形的性质即可求出点C坐标.【详解】解:∵∠BAC=90°∴∠BAO+∠ABO=∠BAO+∠CAD∴∠ABO=∠CAD,又∵轴,∴∠CDA=90°在△ABO与△CAD中,∠ABO=∠CAD,∠AOB=∠CDA,AB=CA,∴△ABO≌△CAD(AAS)∴OB=AD,设OA=a()∵B(0,3)∴AD=3,∴点C(a+3,a),∵点C在反比例函数图象上,∴,解得:或(舍去)∴点C(5,2),故答案为(5,2)【点睛】本题考查了反比例函数与等腰直角三角形相结合的题型,灵活运用几何知识及反比例函数的图象与性质是解题的关键.16、500【分析】次品率,根据抽取的样本数求得该批产品的次品率之后再乘以产品总数即可求解.【详解】解:,(件)【点睛】本题主要考查了数据样本与频率问题,亦可根据比例求解.17、【分析】根据圆周角定理得,由于的直径垂直于弦,根据垂径定理得,且可判断为等腰直角三角形,所以,然后利用进行计算.【详解】解:∵∴∵的直径垂直于弦∴∴为等腰直角三角形∴∴.故答案是:【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.18、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.三、解答题(共78分)19、(1);(2)【分析】(2)根据特殊角的三角函数值,代入求出即可.(2)根据特殊角的三角函数值,零指数幂求出每一部分的值,代入求出即可.【详解】(1)(2)【点睛】本题考查了实数的运算法则,同时也利用了特殊角的三角函数值、0指数幂的定义及负指数幂定义解决问题.20、(1)y=﹣2x+2;(2)W=﹣2x2+120x﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元【分析】(1)由表中数据可知,y是x的一次函数,设y=kx+b,代入表中的两组数据,即可得出函数解析式,再将其余数据验证一下更好;
(2)根据(售价-进价)×销售量=利润,列出函数关系式,再由二次函数的性质可得何时取最大值即可.【详解】(1)由表中数据可知,y是x的一次函数,设y=kx+b,由题意得:解得∴y=﹣2x+2检验:当x=24时,y=﹣2×24+2=32;当x=25时,y=﹣2×25+2=30;当x=1时,y=﹣2×1+2=28;当x=27时,y=﹣2×27+2=1.故y=﹣2x+2符合要求.故答案为:y=﹣2x+2.(2)W与x之间的函数关系式为:W=(x﹣20)(﹣2x+2)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0∴当x=30时,W的值最大,最大值为200元.∴W与x之间的函数关系式为W=﹣2x2+120x﹣1600;当该纪念册销售单价定为30元/件时,才能使文具店销售该纪念册所获利润最大,最大利润是200元.【点睛】本题考查了猜测函数关系式,并用待定系数法求解,以及二次函数在成本利润问题中的应用,明确成本利润之间的基本数量关系及二次函数的性质,是解题的关键.21、(1)x1=﹣2+,x2=﹣2﹣;(2)x1=,x2=﹣.【解析】(1)原式利用配方法求出解即可;(2)原式整理后,利用因式分解法求出解即可.【详解】(1)方程整理得:x2+4x=3,配方得:x2+4x+4=7,即(x+2)2=7,开方得:x+2=±,解得:x1=﹣2+,x2=﹣2﹣;(2)方程整理得:3x(2x+3)﹣2(2x+3)=0,分解因式得:(3x﹣2)(2x+3)=0,可得3x﹣2=0或2x+3=0,解得:x1=,x2=﹣.【点睛】此题考查了解一元二次方程﹣因式分解法,以及配方法,熟练掌握各种解法是解本题的关键.22、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【点睛】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.23、(1)证明见解析;(2)CG=6.【分析】(1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;(2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.【详解】(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,∴∠A=∠BEG,∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,∴∠ABE=∠G,∴△ABE∽△EGB;(2)∵AB=AD=4,E为AD的中点,∴AE=DE=2,在Rt△ABE中,BE=,由(1)知,△ABE∽△EGB,∴,即:,∴BG=10,∴CG=BG﹣BC=10﹣4=6.【点睛】本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键24、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.25、(1)直线与相切;见解析(2)①3;②6.【分析】(1)首先由圆的性质得出,然后由圆内接直角三角形得出,,进而得出,即可判定其相切;(2)①首先根据根据元的性质得出,,进而可判定,即可得出半径;②首先由OP、OB得出OC,然后由切线性质得出,再由判定进而利用相似性质构建方程,即可得解.【详解】直线与相切;理由:连接,,,是的直径,,,,,即,为上的一点,直线与相切;①,,,,,,,圆的半径为;②,,∵过点作的切线交的延长线于点,,,即【点睛】此题主要考查直线和圆的位置关系以及相似三角形的判定与性质,熟练掌握。即可解题.26、详见解析.【分析】三角形模板绕点E旋转60°后,E为旋转中心,位置不变,仍在边BC上,过点E分别做射线EM,EN,EM,EN分别AB,CD于F,G使得∠BEM=∠AEN=60°,可证△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中历史第三单元第二次世界大战第3课走向世界大战讲义新人教版选修3
- 2025年中国仁用杏深加工行业市场调查研究及投资战略咨询报告
- 2024-2025学年高中政治第八课第一框国家财政练习含解析新人教版必修1
- 2023-2028年中国新产品开发废物处置行业市场发展现状及投资战略咨询报告
- 铝箔制品生产项目可行性研究报告立项申请报告模板
- 承包货运合同范本6
- 陶瓷材料项目可行性研究报告
- 文山仓储货架项目资金申请报告
- 中国数字家庭综合服务及全业务套餐市场供需现状及投资战略研究报告
- 导电涂料项目安全评估报告
- WS 400-2023 血液运输标准
- 银行业金融机构监管数据标准化规范(2021版)数据结构一览表
- 电子商务基础与实务(第四版)高职PPT完整全套教学课件
- 信息论与编码(第4版)完整全套课件
- 施工吊篮工程监理实施细则
- 自动扶梯与自动人行道调试作业指导书(通用版)
- 2023年全国卷英语甲卷讲评课件-2024届高考英语复习
- 现代通信原理与技术(第五版)PPT全套完整教学课件
- 《战胜抑郁 走出抑郁症的30天自我康复训练》读书笔记思维导图
- 幼儿园课件:时钟国王
- 最值问题-阿氏圆
评论
0/150
提交评论