2022年广东省佛山市顺德区碧桂园学校数学九年级第一学期期末达标检测模拟试题含解析_第1页
2022年广东省佛山市顺德区碧桂园学校数学九年级第一学期期末达标检测模拟试题含解析_第2页
2022年广东省佛山市顺德区碧桂园学校数学九年级第一学期期末达标检测模拟试题含解析_第3页
2022年广东省佛山市顺德区碧桂园学校数学九年级第一学期期末达标检测模拟试题含解析_第4页
2022年广东省佛山市顺德区碧桂园学校数学九年级第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是二次函数图象的一部分,图象过点,对称轴为直线,给出四个结论:①;②;③若点、为函数图象上的两点,则;④关于的方程一定有两个不相等的实数根.其中,正确结论的是个数是()A.4 B.3 C.2 D.12.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()A. B.C. D.3.如图,在中,是斜边上的高,则图中的相似三角形共有()A.1对 B.2对 C.3对 D.4对4.已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是().A. B. C. D.5.下列说法正确的是()A.对应边都成比例的多边形相似 B.对应角都相等的多边形相似C.边数相同的正多边形相似 D.矩形都相似6.在校田径运动会上,小明和其他三名选手参加100米预赛,赛场共设1,2,3,4四条跑道,选手以随机抽签的方式决定各自的跑道.若小明首先抽签,则小明抽到1号跑道的概率是()A. B. C. D.7.某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为,,则产量稳定,适合推广的品种为:()A.甲、乙均可 B.甲 C.乙 D.无法确定8.如图,矩形ABCD中,BC=4,CD=2,O为AD的中点,以AD为直径的弧DE与BC相切于点E,连接BD,则阴影部分的面积为()A.π B. C.π+2 D.+49.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C. D.10.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1-2x)=16 B.16(1+2x)=28 C.28(1-x)2=16 D.16(1+x)2=2811.如图,⊙的半径垂直于弦,是优弧上的一点(不与点重合),若,则等于()A. B. C. D.12.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>- B.k>-且 C.k<- D.k-且二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,已知▱OABC的顶点坐标分别是O(0,0),A(3,0),B(4,2),C(1,2),以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF,则点E的坐标是_____.14.如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.15.如果关于x的方程x2-5x+a=0有两个相等的实数根,那么a=_____.16.如果函数是二次函数,那么k的值一定是________.17.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.18.如果点把线段分割成和两段(),其中是与的比例中项,那么的值为________.三、解答题(共78分)19.(8分)如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.20.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为.(2)小明和小颖用转盘做游戏,每人转动转盘一次,若两次指针所指数字之和为奇数,则小明胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或者列表法说明理由.21.(8分)对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=1时,代数式等于1;当x=1时,代数式等于1,我们就称1和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=1.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=1,求b的值.22.(10分)计算题:(1)计算:sin45°+cos230°•tan60°﹣tan45°;(2)已知是锐角,,求.23.(10分)(1)如图1,在平行四边形ABCD中,点E1,E2是AB三等分点,点F1,F2是CD三等分点,E1F1,E2F2分别交AC于点G1,G2,求证:AG1=G1G2=G2C.(2)如图2,由64个边长为1的小正方形组成的一个网格图,线段MN的两个端点在格点上,请用一把无刻度的尺子,画出线段MN三等分点P,Q.(保留作图痕迹)24.(10分)如图是由6个形状、大小完全相同的小矩形组成的,小矩形的顶点称为格点.已知小矩形较短边长为1,的顶点都在格点上.(1)用无刻度的直尺作图:找出格点,连接,使;(2)在(1)的条件下,连接,求的值.25.(12分)如图,AB为⊙O的直径,C为⊙O上一点,过点C做⊙O的切线,与AE的延长线交于点D,且AD⊥CD.(1)求证:AC平分∠DAB;(2)若AB=10,CD=4,求DE的长.26.如图,在平面直角坐标系中,抛物线的图象与x轴交于,B两点,与y轴交于点,对称轴与x轴交于点H.(1)求抛物线的函数表达式(2)直线与y轴交于点E,与抛物线交于点P,Q(点P在y轴左侧,点Q在y轴右侧),连接CP,CQ,若的面积为,求点P,Q的坐标.(3)在(2)的条件下,连接AC交PQ于G,在对称轴上是否存在一点K,连接GK,将线段GK绕点G逆时针旋转90°,使点K恰好落在抛物线上,若存在,请直接写出点K的坐标不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】①根据抛物线开口方向、对称轴及与y轴交点情况可判断;②根据抛物线对称轴可判断;③根据点离对称轴的远近可判断;④根据抛物线与直线交点个数可判断.【详解】由图象可知:开口向下,故,

抛物线与y轴交点在x轴上方,故>0,

∵对称轴,即同号,

∴,

∴,故①正确;∵对称轴为,

∴,

∴,故②不正确;∵抛物线是轴对称图形,对称轴为,点关于对称轴为的对称点为当时,

此时y随的增大而减少,

∵30,

∴,故③错误;∵抛物线的顶点在第二象限,开口向下,与轴有两个交点,

∴抛物线与直线有两个交点,

∴关于的方程有两个不相等的实数根,所以④正确;综上:①④正确,共2个;故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象及性质,能够从函数图象获取信息,结合函数解析式进行求解是关键.2、A【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.3、C【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【详解】∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD所以有三对相似三角形,故选:C.【点睛】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.4、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本题的关键.5、C【解析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.6、B【详解】解:小明选择跑道有4种结果,抽到跑道1只有一种结果,小明抽到1号跑道的概率是故选B.【点睛】本题考查概率.7、B【解析】试题分析:这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定,因此可知推广的品种为甲.答案为B考点:方差8、A【分析】连接OE交BD于F,如图,利用切线的性质得到OE⊥BC,再证明四边形ODCE和四边形ABEO都是正方形得到BE=2,∠DOE=∠BEO=90°,易得△ODF≌△EBF,所以S△ODF=S△EBF,然后根据扇形的面积公式,利用阴影部分的面积=S扇形EOD计算即可.【详解】连接OE交BD于F,如图,∵以AD为直径的半圆O与BC相切于点E,∴OE⊥BC.∵四边形ABCD为矩形,OA=OD=2,而CD=2,∴四边形ODCE和四边形ABEO都是正方形,∴BE=2,∠DOE=∠BEO=90°.∵∠BFE=∠DFO,OD=BE,∴△ODF≌△EBF(AAS),∴S△ODF=S△EBF,∴阴影部分的面积=S扇形EOD.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形面积公式.9、C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.故选C.考点:动点问题的函数图象.10、C【解析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=1,把相应数值代入即可求解.【详解】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(﹣x)元,则列出的方程是28(1﹣x)2=1.故选:C.11、A【分析】根据题意,⊙的半径垂直于弦,可应用垂径定理解题,平分弦,平分弦所对的弧、平分弦所对的圆心角,故,又根据同一个圆中,同弧所对的圆周角等于其圆心角的一半,可解得【详解】⊙的半径垂直于弦,故选A【点睛】本题考查垂径定理、圆周角与圆心角的关系,熟练掌握相关知识并灵活应用是解题关键.12、B【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.二、填空题(每题4分,共24分)13、(12,6)或(-12,-6)【分析】根据平行四边形的性质、位似变换的性质计算,得到答案.【详解】以坐标原点O为位似中心,将▱OABC放大3倍,得到▱ODEF∵点B的坐标为(4,2),且点B的对应点为点E∴点E的坐标为(4×3,2×3)或(-4×3,-2×3)即:(12,6)或(-12,-6)故答案为:(12,6)或(-12,-6).【点睛】本题考查了位似和平行四边形的知识;求解的关键是熟练掌握位似的性质,从而完成求解.14、1.【分析】延长BQ交射线EF于M,根据三角形的中位线平行于第三边可得EF∥BC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BP=PM,求出EP+BP=EM,再根据CQ=CE求出EQ=2CQ,然后根据△MEQ和△BCQ相似,利用相似三角形对应边成比例列式求解即可.【详解】如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC.∴∠M=∠CBM.∵BQ是∠CBP的平分线,∴∠PBM=∠CBM.∴∠M=∠PBM.∴BP=PM.∴EP+BP=EP+PM=EM.∵CQ=CE,∴EQ=2CQ.由EF∥BC得,△MEQ∽△BCQ,∴.∴EM=2BC=2×6=1,即EP+BP=1.故答案为:1.【点睛】本题考查了相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ构造出相似三角形,求出EP+BP=EM并得到相似三角形是解题的关键,也是本题的难点.15、【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值.【详解】∵关于x的方程x2-5x+a=0有两个相等的实数根,∴△=25-4a=0,即a=.故答案为:.【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16、-1【解析】根据二次函数的定义判定即可.【详解】∵函数是二次函数,∴k2-7=2,k-1≠0解得k=-1.故答案为:-1.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.17、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】∵点A坐标为(3,4),∴OA==5,∴cosα=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.18、【分析】根据黄金分割的概念和黄金比是解答即可.【详解】∵点把线段分割成和两段(),其中是与的比例中项,∴点P是线段AB的黄金分割点,∴=,故填.【点睛】此题考察黄金分割,是与的比例中项即点P是线段AB的黄金分割点,即可得到=.三、解答题(共78分)19、(1)y=(x-1)2-4;(2)点G坐标为(3.6,2.76),S△FHG=6.348;(3)m=0.6,四边形CDPQ为平行四边形,理由见解析.【分析】(1)利用顶点式求解即可,(2)将G点代入函数解析式求出坐标,利用坐标的特点即可求出面积,(3)作出图象,延长QH,交x轴于点R,由平行线的性质得证明△AQR∽△PHQ,设Q[n,0.6(n+1)],代入y=mx+m中,即可证明四边形CDPQ为平行四边形.【详解】(1)设二次函数的解析式是y=a(x-h)2+k,(a≠0),由题可知该抛物线与y轴交于点E(0,),顶点为C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)设G[a,0.6(a+1)],代入函数关系式,得,,解得a1=3.6,a2=-1(舍去),所以点G坐标为(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),当x=-1时,y=0,所以直线y=mx+m延长QH,交x轴于点R,由平行线的性质得,QR⊥x轴.因为FH∥x轴,所以∠QPH=∠QAR,因为∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以=0.6,设Q[n,0.6(n+1)],代入y=mx+m中,mn+m=0.6(n+1),m(n+1)=0.6(n+1),因为n+1≠0,所以m=0.6..因为y2=(x-1-m)2+0.6m-4,所以点D由点C向右平移m个单位,再向上平移0.6m个单位所得,过D作y轴的平行线,交x轴与K,再作CT⊥KD,交KD延长线与T,所以=0.6,所以tan∠KSD=tan∠QAR,所以∠KSD=∠QAR,所以AQ∥CS,即CD∥PQ.因为AQ∥CS,由抛物线平移的性质可得,CT=PH,DT=QH,所以PQ=CD,所以四边形CDPQ为平行四边形.【点睛】本题考查了待定系数法求解二次函数解析式,二次函数的图象和性质,一次函数与二次函数的交点问题,相似三角形的判定和性质,综合性强,难度较大,掌握待定系数法是求解(1)的关键,求出G点坐标是求解(2)的关键,证明三角形的相似并理解题目中准黄金直角三角形的概念是求解(3)的关键.20、(1);(2)不公平,理由见解析【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况,得出这两个数字之和是奇数与偶数的情况,再根据概率公式即可得出答案.【详解】解:(1)∵在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)不公平,理由如下:列表如下:121121421451456由表可知,所有等可能的情况数为9种,其中两次指针所指数字之和为奇数的有4种结果,和为偶数的有5种结果,所以小明获胜的概率为,小颖获胜的概率为,由≠知此游戏不公平.【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.21、(3)﹣3和2;2;(2)见解析;(2)﹣2或3【分析】(3)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;(2)由方程的系数结合根的判别式可得出方程2x2﹣x+3=3没有实数根,进而可得出代数式2x2+3没有不变值;(2)由A=3可得出方程x2﹣(b+3)x+3=3有两个相等的实数根,进而可得出△=3,解之即可得出结论.【详解】解:(3)依题意,得:x2﹣2=x,即x2﹣x﹣2=3,解得:x3=﹣3,x2=2,∴A=2﹣(﹣3)=2.故答案为﹣3和2;2.(2)依题意,得:2x2+3=x,∴2x2﹣x+3=3,∵△=(﹣3)2﹣4×2×3=﹣33<3,∴该方程无解,即代数式2x2+3没有不变值.(2)依题意,得:方程x2﹣bx+3=x即x2﹣(b+3)x+3=3有两个相等的实数根,∴△=[﹣(b+3)]2﹣4×3×3=3,∴b3=﹣2,b2=3.答:b的值为﹣2或3.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.22、(1);(2)1﹣【分析】(1)代入特殊锐角的三角函数值进行实数的运算便可;(2)由已知求出α的度数,再代入计算便可.【详解】解:原式(2)∵∴,∴∴,原式【点睛】本题考查的是利用特殊角的三角函数值进行运算,熟记特殊角的三角函数值是解题关键.23、(1)见解析;(2)见解析【分析】(1)利用平行线分线段成比例定理证明即可.(2)利用(1)中结论,构造平行四边形解决问题即可.【详解】解:(1)证明:如图1中,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,AD∥BC,∵DF1=CD,AE1=AB,∴DF1=AE1,∴四边形ADF1E1是平行四边形,∴AD∥E1F1,∴E1G1∥BC,∴,同法可证:,∴AG1=CG2=AC,∴AG1=G1G2=G2C.(2)如图,点P,Q即为所求.【点睛】本题主要考查了平行四边形的性质,平行线分线段成比例定理,掌握平行四边形的性质,平行线分线段成比例定理是解题的关键.24、(1)答案见解析;(2).【分析】(1)把一条直尺边与直线AC重合,沿着直线AC移动直尺,直到格点在另一直角边上,即为找出格点,连接;(2)连接BD,根据勾股定理分别求出BD和AB的长度,从而求的值.【详解】(1)如图,(2)如图,连接,连接BD.∵,,∴,.易知,,∴,,∴,∴.【点睛】本题考查了几何作图以及三角函数的应用,掌握勾股定理求出对应边长代入三角函数是解题的关键.25、(1)见解析;(1)DE=1【分析】(1)连接OC,利用切线的性质可得出OC∥AD,再根据平行线的性质得出∠DAC=∠OCA,又因为∠OCA=∠OAC,继而可得出结论;(1)方法一:连接BE交OC于点H,可证明四边形EHCD为矩形,再根据垂径定理可得出,得出,从而得出,再通过三角形中位线定理可得出,继而得出结论;方法二:连接BC、EC,可证明△ADC∽△ACB,利用相似三角形的性质可得出AD=8,再证△DEC∽△DCA,从而可得出结论;方法三:连接BC、EC,过点C做CF⊥AB,垂足为F,利用已知条件得出OF=3,再证明△DEC≌△CFB,利用全等三角形的性质即可得出答案.【详解】解:(1)证明:连接OC,∵CD切☉O于点C∴OC⊥CD∵AD⊥CD∴∠D=∠OCD=90°∴∠D+∠OCD=180°∴OC∥AD∴∠DAC=∠OCA∵OA=OC∴∠OCA=∠OAC∴∠DAC=∠OAC∴AC平分DAB(1)方法1:连接BE交OC于点H∵AB是☉O直径∴∠AEB=90°∴∠DEC=90°∴四边形EHCD为矩形∴CD=EH=4DE=CH∴∠CHE=90°即OC⊥BH∴EH=BE=4∴BE=8∴在Rt△AEB中AE=6∵EH=BHAO=BO∴OH=AE=3∴CH=1∴DE=1方法1:连接BC、EC∵AB是直径∴∠ACB=90°∴∠D=∠ACB∵∠DAC=∠CAB∴△ADC∽△ACB∴∠B=∠DCA∴AC1=10·AD∵AC1=AD1+CD1∴10·AD=AD1+16∴AD=1舍AD=8∵四边形ABCE内接于☉O∴∠B+∠AEC=180°∵∠DEC+∠AEC=180°∴∠B=∠DEC∴∠DEC=∠DCA∵∠D=∠D∴△DEC∽△DCA∴∴CD1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论