版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则EC:AE的值为()A. B. C. D.2.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A. B. C. D.3.二次函数y=a+bx+c的图象如图所示,则下列关系式错误的是()A.a<0 B.b>0 C.﹣4ac>0 D.a+b+c<04.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.方程的解是()A.4 B.-4 C.-1 D.4或-16.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+37.如图,线段OA=2,且OA与x轴的夹角为45°,将点A绕坐标原点O逆时针旋转105°后得到点,则的坐标为()A. B. C. D.8.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴有两个交点C.对称轴是直线线x=2D.当x>2时,y随x的增大而增大9.下列由几何图形组合的图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.10.如图,以为顶点的三角形与以为顶点的三角形相似,则这两个三角形的相似比为()A.2:1 B.3:1 C.4:3 D.3:2二、填空题(每小题3分,共24分)11.分式方程=1的解为_____12.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是13.若最简二次根式与是同类根式,则________.14.已知二次函数y=-x2+2x+1,若y随x增大而增大,则x的取值范围是____.15.二次函数y=2x2﹣4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=_____.16.半径为4的圆中,长为4的弦所对的圆周角的度数是_________.17.若函数是正比例函数,则__________.18.如图,在中,弦,点在上移动,连结,过点作交于点,则的最大值为__________.三、解答题(共66分)19.(10分)用适当方法解下列方程.(1)(2)20.(6分)如图,在平面直角坐标系xOy中,直线y=x﹣2与反比例函数y=(k为常数,k≠0)的图象在第一象限内交于点A,点A的横坐标为1.(1)求反比例函数的表达式;(2)设直线y=x﹣2与y轴交于点C,过点A作AE⊥x轴于点E,连接OA,CE.求四边形OCEA的面积.21.(6分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.22.(8分)问题探究:(1)如图①所示是一个半径为,高为4的圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程.(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图①中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图②所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程.(3)如图③所示,在②的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程.23.(8分)先化简,再求值:,其中x=1﹣.24.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?25.(10分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.26.(10分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴,∵AD=4,DB=2,∴,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.2、C【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3、D【解析】试题分析:根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.考点:二次函数图象与系数的关系4、A【分析】根据必然事件的概念:在一定条件下,必然发生的事件叫做必然事件分析判断即可.【详解】A、是必然事件;B、是随机事件,选项错误;C、是随机事件,选项错误;D、是随机事件,选项错误.故选A.5、D【分析】利用因式分解法解一元二次方程即可.【详解】解:解得:故选D.【点睛】此题考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解决此题的关键.6、C【解析】先提出二次项系数,再加上一次项系数一半的平方,即得出顶点式的形式.【详解】解:提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故选:C.【点睛】本题考查二次函数的三种形式,一般式:y=ax2+bx+c,顶点式:y=a(x-h)2+k;两根式:y=7、C【分析】如图所示,过作⊥y轴于点B,作⊥x轴于点C,根据旋转的性质得出,,从而得出,利用锐角三角函数解出CO与OB即可解答.【详解】解:如图所示,过作⊥y轴于点B,作⊥x轴于点C,由旋转可知,,,∵AO与x轴的夹角为45°,∴∠AOB=45°,∴,∴,,∴,故选:C.【点睛】本题考查了旋转的性质以及解直角三角形,解题的关键是得出,并熟悉锐角三角函数的定义及应用.8、B【分析】把二次函数解析式化为顶点式,逐项判断即可得出答案.【详解】∵y=x2﹣4x+4=(x﹣2)2,∴抛物线开口向上,对称轴为x=2,当x>2时,y随x的增大而增大,∴选项A、C、D说法正确;令y=0可得(x﹣1)2=0,该方程有两个相等的实数根,∴抛物线与x轴有一个交点,∴B选项说法错误.故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,掌握二次函数的顶点式是解答本题的关键,即在y=a(x﹣h)2+k中,其对称轴为x=h,顶点坐标为(h,k).9、A【分析】根据轴对称图形和中心对称图形的定义逐项判断即得答案.【详解】解:A、既是轴对称图形又是中心对称图形,故本选项符合题意;B、是轴对称图形,但不是中心对称图形,故本选项不符合题意;C、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D、是中心对称图形,但不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于应知应会题型,熟知二者的概念是解题关键.10、A【分析】通过观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,即可得出结论.【详解】解:观察图形可知∠C和∠F是对应角,所以AB和DE是对应边;BC和EF是对应边,∵BC=12,EF=6,∴.故选A.【点睛】此题重点考察学生对相似三角形性质的理解,掌握相似三角形性质是解题的关键.二、填空题(每小题3分,共24分)11、x=0.1【解析】分析:方程两边都乘以最简公分母,化为整式方程,然后解方程,再进行检验.详解:方程两边都乘以2(x2﹣1)得,8x+2﹣1x﹣1=2x2﹣2,解得x1=1,x2=0.1,检验:当x=0.1时,x﹣1=0.1﹣1=﹣0.1≠0,当x=1时,x﹣1=0,所以x=0.1是方程的解,故原分式方程的解是x=0.1.故答案为:x=0.1点睛:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.12、.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13、1【分析】根据同类二次根式的定义可得a+2=5a-2,即可求出a值.【详解】∵最简二次根式与是同类根式,∴a+2=5a-2,解得:a=1.故答案为:1【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式;熟记定义是解题关键.14、x≤1【解析】试题解析:二次函数的对称轴为:随增大而增大时,的取值范围是故答案为15、1.【分析】根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.【详解】解:∵二次函数y=1x1﹣4x+4=1(x﹣1)1+1,∴点P的坐标为(1,1),设点M的坐标为(a,1),则点N的坐标为(a,1a1﹣4a+4),∴===1,故答案为:1.【点睛】本题考查了二次函数与几何的问题,解题的关键是求出点P左边,设出点M、点N的坐标,表达出.16、或【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得是等边三角形,再利用圆周角定理,即可得出答案.【详解】.如图所示在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵,∴∴是等边三角形∴∴∴∴所对的圆周角的度数为或故答案为:或.【点睛】本题考查了圆周角的问题,掌握圆周角定理是解题的关键.17、【分析】根据正比例函数的定义即可得出答案.【详解】∵函数是正比例函数∴-a+1=0解得:a=1故答案为1.【点睛】本题考查的是正比例函数,属于基础题型,正比例函数的表达式为:y=kx(其中k≠0).18、2【分析】连接OD,根据勾股定理求出CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据垂径定理计算即可;【详解】如图,连接OD,∵CD⊥OC,∴∠DCO=,∴,当OC的值最小时,CD的值最大,OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=2,即CD的最大值为2;故答案为:2.【点睛】本题主要考查了勾股定理,垂径定理,掌握勾股定理,垂径定理是解题的关键.三、解答题(共66分)19、(1),;(2),【解析】(1),,△=16-4×3×(-1)=28,∴,∴,;(2),,,∴或,∴,20、(1)y=;(2)2.【分析】(1)先求出点A的坐标,然后利用待定系数法即可求出结论;(2)先求出点C的坐标,然后求出点E的坐标,最后利用四边形OCEA的面积=+即可得出结论.【详解】解:(1)当x=1时,y=x﹣2=1﹣2=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=;(2)当x=0时,y=x﹣2=﹣2,则C(0,﹣2),∵AE⊥x轴于点E,∴E(1,0),∴四边形OCEA的面积=+=×1×2+×1×2=2.【点睛】此题考查的是反比例函数与一次函数的交点问题,掌握利用待定系数法求反比例函数解析式和三角形的面积公式是解决此题的关键.21、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴抛物线的解析式为y=﹣x1+x+1.(1)①∵直线y=x-1与y轴交于点C,与x轴交于点D,∴点C的坐标为(0,-1),点D的坐标为(1,0),∴0<m<1.∵点P的横坐标为m,∴点P的坐标为(m,﹣m1+m+1),点E的坐标为(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴当m=时,PE最长.②由①可知,点P的坐标为(,).以P、Q、C、D为顶点的四边形是平行四边形分三种情况(如图所示):①以PD为对角线,点Q的坐标为;②以PC为对角线,点Q的坐标为;③以CD为对角线,点Q的坐标为.综上所述:在(1)的情况下,存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为.【点睛】本题考查二次函数图像的综合问题,解题关键是熟练掌握待定系数法求解析式、函数的思想求最大值以及平行四边形的性质及平移规律等知识.22、(1)蚂蚁爬行的最短路程为1;(2)最短路程为;(3)蚂蚁爬行的最短距离为【分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA′的连线,可求得△PAA′是等边三角形,则AA′=PA=4;(3)蚂蚁爬行的最短路程为圆锥展开图中点A到PA的距离.【详解】(1)由题意可知:在中,即蚂蚁爬行的最短路程为1.(2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径,则由题意得:即是等边三角形最短路程为(3)如图③所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程.在Rt△ACP中,∵∠P=60°,∴∠PAC=30°∴PC=PA=×4=2∴AC==蚂蚁爬行的最短距离为【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质,掌握相关公式和性质定理是本题的解题关键.23、1﹣x,原式=.【分析】先利用分式的加减乘除运算对分式进行化简,然后把x的值代入即可.【详解】原式=当x=1﹣时,∴原式=1﹣(1﹣)=;【点睛】本题主要考查分式的化简求值,掌握分式混合运算的顺序和法则是解题的关键.24、(1)20%;(2)能.【分析】(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.25、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 普通劳务用工合同范例
- 2025正规土地转让合同格式
- 员工与法人合同范例
- 中药饮合同范例
- 水果产地采购合同范例
- 铜仁幼儿师范高等专科学校《工业机器人控制技术课程设计》2023-2024学年第一学期期末试卷
- 铜陵学院《计里经济学》2023-2024学年第一学期期末试卷
- 铜陵学院《报道摄影与图片编辑(实训)》2023-2024学年第一学期期末试卷
- 桐城师范高等专科学校《土木工程建造与前沿技术》2023-2024学年第一学期期末试卷
- 同济大学浙江学院《分析化学A》2023-2024学年第一学期期末试卷
- T∕CAAA 005-2018 青贮饲料 全株玉米
- s铁路预应力混凝土连续梁(钢构)悬臂浇筑施工技术指南
- 拨叉831006设计说明书
- 程序语言课程设计任意两个高次多项式的加法和乘法运算
- WLANAP日常操作维护规范
- GE公司燃气轮机组支持轴承结构及性能分析
- 石油钻井八大系统ppt课件
- 北师大版二年级数学上册期末考试复习计划
- 人教PEP版六年级英语上册《Unit4_B_Let’s_learn教学设计》
- 农村供水工程设计技术要点
- 收货回执单1页
评论
0/150
提交评论