2022年福建省福清市九年级数学第一学期期末统考试题含解析_第1页
2022年福建省福清市九年级数学第一学期期末统考试题含解析_第2页
2022年福建省福清市九年级数学第一学期期末统考试题含解析_第3页
2022年福建省福清市九年级数学第一学期期末统考试题含解析_第4页
2022年福建省福清市九年级数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.150°的圆心角所对的弧长是5πcm,则此弧所在圆的半径是()A.1.5cm B.3cm C.6cm D.12cm2.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.13.如图,在的正方形网格中,有三个小正方形已经涂成灰色,若再任意涂灰2个白色小正方形(每个白色小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A. B. C. D.4.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.5.如图,线段,点是线段的黄金分割点(),点是线段的黄金分割点(),点是线段的黄金分割点(),..,依此类推,则线段的长度是()A. B. C. D.6.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50° B.80° C.100° D.110°7.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10π B.C.π D.π8.若反比例函数y=的图象经过点(2,﹣6),则k的值为()A.﹣12 B.12 C.﹣3 D.39.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③ B.①③④ C.①②④ D.②③④10.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小 B.不可能摸出白球C.一定能摸出红球 D.摸出红球的可能性最大二、填空题(每小题3分,共24分)11.点关于轴的对称点的坐标是__________.12.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.13.如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为__________米.14.若关于的方程的一个根是1,则的值为______.15.如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为_____.16.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为3cm,则该莱洛三角形的周长为_______cm.17.若关于的一元二次方程有实数根,则的取值范围是_______.18.已知函数y=kx2﹣2x+1的图象与x轴只有一个有交点,则k的值为_____.三、解答题(共66分)19.(10分)已知二次函数中,函数与自变量的部分对应值如下表:(1)求该二次函数的关系式;(2)若,两点都在该函数的图象上,试比较与的大小.20.(6分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.21.(6分)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,则抽到数字“2”的概率是___________;(2)从四张卡片中随机抽取2张卡片,请用列表或画树状图的方法求抽到“数字和为5”的概率.22.(8分)如图,直线与轴交于点(),与轴交于点,抛物线()经过,两点,为线段上一点,过点作轴交抛物线于点.(1)当时,①求抛物线的关系式;②设点的横坐标为,用含的代数式表示的长,并求当为何值时,?(2)若长的最大值为16,试讨论关于的一元二次方程的解的个数与的取值范围的关系.23.(8分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.24.(8分)如图,在平行四边形中,连接对角线,延长至点,使,连接,分别交,于点,.(1)求证:;(2)若,求的长.25.(10分)如图,在△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.(1)若AE=4,求EC的长;(2)若M为BC的中点,S△ABC=36,求S△ADN的值.26.(10分)如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.(1)DE与⊙O有什么位置关系,请写出你的结论并证明;(2)若⊙O的半径长为3,AF=4,求CE的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据150°的圆心角所对的弧长是5πcm,代入弧长公式即可得到此弧所在圆的半径.【详解】设此弧所在圆的半径为rcm,∵150°的圆心角所对的弧长是5πcm,∴,解得,r=6,故选:C.【点睛】本题考查弧长的计算,熟知弧长的计算公式是解题的关键.2、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】∵点A(1,a)、点B(b,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.3、C【分析】根据题目意思我们可以得出总共有15种可能,而能构成轴对称图形的可能有4种,然后根据概率公式可计算出新构成的黑色部分的图形是轴对称图形的概率.【详解】解:如图所示可以涂成黑色的组合有:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;一共有15种可能构成黑色部分的图形是轴对称图形的:1,4;3,6;2,3;4,5;∴构成黑色部分的图形是轴对称图形的概率:故选:C.【点睛】此题主要考查的是利用轴对称设计图案,正确得出所有组合是解题的关键.4、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【点睛】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.5、A【解析】根据黄金分割的定义得到,则,同理得到,,根据此规律得到.据此可得答案.【详解】解:线段,点是线段的黄金分割点,,,点是线段的黄金分割点,,,.所以线段的长度是,故选:.【点睛】本题考查了黄金分割:把线段分成两条线段和,且使是和的比例中项(即,叫做把线段黄金分割,点叫做线段的黄金分割点;其中,并且线段的黄金分割点有两个.6、C【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.7、C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:AC=,又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为l=.故选C.8、A【解析】试题分析:∵反比例函数的图象经过点(2,﹣6),∴,解得k=﹣1.故选A.考点:反比例函数图象上点的坐标特征.9、C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设,,由函数图像利用△EBF面积列出方程组即可解决问题.③由,,得,设,,在中,由列出方程求出,即可判断.④求出即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点运动到点时用了2.5秒,运动到点时共用了4秒.故①正确.设,,由题意,解得,所以,,故②正确,,,,设,,在中,,,解得或(舍,,,,故③错误,,,,故④正确,故选:C.【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.10、D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,

∴摸出黑球的概率是,

摸出白球的概率是,

摸出红球的概率是,

∵<<,

∴从中任意摸出1个球,摸出红球的可能性最大;

故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.二、填空题(每小题3分,共24分)11、【分析】根据对称点的特征即可得出答案.【详解】点关于轴的对称点的坐标是,故答案为.【点睛】本题考查的是点的对称,比较简单,需要熟练掌握相关基础知识.12、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.13、【解析】设圆心为O,半径长为r米,根据垂径定理可得AD=BD=6,则OD=(r-4),然后利用勾股定理在Rt△AOD中求解即可.【详解】解:设圆心为O,半径长为r米,可知AD=BD=6米,OD=(r-4)米在Rt△AOD中,根据勾股定理得:,解得r=6.5米,即半径长为6.5米.故答案为6.5【点睛】本题考查了垂径定理的应用,要熟练掌握勾股定理的性质,能够运用到实际生活当中.14、-6【分析】把x=1代入原方程就可以得到一个关于k的方程,解这个方程即可求出k的值.【详解】把代入方程得到,解得.故答案为:−6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.15、.【解析】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=.∴OB=3+∴S△POB=OB•PH=.16、【分析】直接利用弧长公式计算即可.【详解】解:该莱洛三角形的周长=3×.故答案为:.【点睛】本题考查了弧长公式:(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.17、【分析】对于一元二次方程,当时有实数根,由此可得m的取值范围.【详解】解:由题意可得,解得.故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式是解题的关键.18、0或1.【分析】当k=0时,函数为一次函数,满足条件;当k≠0时,利用判别式的意义得到当△=0时抛物线与x轴只有一个交点,求出此时k的值即可.【详解】当k=0时,函数解析式为y=﹣2x+1,此一次函数与x轴只有一个交点;当k≠0时,△=(﹣2)2﹣4k=0,解得k=1,此时抛物线与x轴只有一个交点,综上所述,k的值为0或1.故答案为0或1.【点睛】本题考查了抛物线与x轴的交点问题,注意要分情况讨论.三、解答题(共66分)19、(1);(2)当时,;当时,;当时,.【分析】(1)根据表格得到(0,5)与(1,2)都在函数图象上,代入函数解析式求出b与c的值,即可确定出解析式;(2)求出,根据m的取值分类讨论即可求解.【详解】根据题意,当时,;当时,;解得:,该二次函数关系式为;(2),两点都在函数的图象上,,,①当,即时,;②当,即时,;③当,即时,.【点睛】此题考查了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.20、.【分析】用列举法求得所有的等可能结果,然后根据概率公式进行计算.【详解】解:依题意,共有6中等可能结果,分别是(红,黄,蓝),(红,蓝,黄),(黄,红,蓝),(黄,蓝,红),(蓝,红,黄),(蓝,黄,红).所有结果发生的可能性都相等.其中第三次摸出的球是红球(记为事件)的结果有2种,∴.∴第三次摸出的球是红球的概率是.【点睛】本题考查列举法求概率,理解题意列举出所有的等可能结果是本题的解题关键.21、(1);(2)P=

.【解析】(1)根据概率公式直接解答;(2)画出树状图,找到所有可能的结果,再找到抽到“数字和为5”的情况,即可求出其概率.【详解】解:(1)∵四张正面分别标有数字1,2,3,4的不透明卡片,∴随机抽取一张卡片,抽到数字“2”的概率=;(2)随机抽取第一张卡片有4种等可能结果,抽取第二张卡片有3种等可能结果,列树状图为:所有可能结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1)(4,2),(4,3),总的结果共12种,数字和为“5”的结果有4种:(1,4),(2,3),(3,2),(4,1)抽到数字和为“5”的概率P=.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)①;②;当x=1或x=4时,;(1)当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解.【分析】(1)①首先根据题意得出点A、B的坐标,然后代入抛物线解析式即可得出其表达式;②首先由点A的坐标得出直线解析式,然后得出点P、Q坐标,根据平行构建方程,即可得解;(1)首先得出,然后由PQ的最大值得出最大值,再利用二次函数图象的性质分类讨论一元二次方程的解即可.【详解】(1)①∵m=5,∴点A的坐标为(5,0).将x=0代入,得y=1.∴点B的坐标为(0,1).将A(5,0),B(0,1)代入,得解得∴抛物线的表达式为.②将A(5,0)代入,解得:.∴一次函数的表达为.∴点P的坐标为,又∵PQ∥y轴,∴点Q的坐标为∴∵,∴解得:,∴当x=1或x=4时,;(1)由题意知:设,∴为的二次函数,又<,∵长的最大值为2,∴最大值为2.∴由二次函数的图象性质可知当时,一元二次方程有一个解;当>2时,一元二次方程无解;当<2时,一元二次方程有两个解..【点睛】此题主要考查一次函数与二次函数的综合运用,熟练掌握,即可解题.23、(1)证明见解析;(2)1.【分析】(1)首先连接OD,根据等腰三角形的性质可证∠C=∠ODC,从而可证∠B=∠ODC,根据DF⊥AB可证DF⊥OD,所以可证线DF与⊙O相切;(2)根据圆内接四边形的性质可得:△BCA∽△BED,所以可证:,解方程求出BE的长度,从而求出AC的长度.【详解】解:(1)如图所示,连接,∵,∴,∵,∴,∴,∴∥,∵,∴;∵点在⊙O上,∴直线与⊙O相切;(2)∵四边形是⊙O的内接四边形,∴,∵,∴,∴△BED∽△BCA,∴,∵OD∥AB,,∴,∵,∴,∴,∴【点睛】本题考查切线的判定与性质;相似三角形的判定与性质.24、(1)见解析;(1)1【分析】(1)由平行四边形的性质,得,,进而得,,结合,即可得到结论;(2)易证,进而得,即可求解.【详解】(1)四边形是平行四边形,,,,,又∵,,(ASA),;(1)四边形是平行四边形,,,,即,∴FG=1.【点睛】本题主要考查平行四边形的性质和三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论