版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,点A、点B是函数y=的图象上关于坐标原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积是4,则k的值是()A.-2 B.±4 C.2 D.±22.若有意义,则x的取值范围是A.且 B. C. D.3.参加一次聚会的每两人都握了一次手,所有人共握手10
次,若共有
x
人参加聚会,则根据题意,可列方程()A. B. C. D.4.半径为R的圆内接正六边形的面积是()A.R2 B.R2 C.R2 D.R25.若,,则以为根的一元二次方程是()A. B.C. D.6.如图,用尺规作图作的平分线,第一步是以为圆心,任意长为半径画弧,分别交于点;第二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,那么为所作,则说明的依据是()A. B. C. D.7.二次函数y=-2(x+1)2+5的顶点坐标是()A.-1 B.5 C.(1,5) D.(-1,5)8.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.9.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是()A.20° B.30° C.45° D.60°10.将一元二次方程x2-4x+3=0化成(x+m)2=n的形式,则n等于()A.-3 B.1 C.4 D.711.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是()A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形C.若AD平分∠BAC,则四边形AEDF是矩形D.若AD⊥BC且AB=AC,则四边形AEDF是菱形12.下列事件中是必然发生的事件是()A.投掷一枚质地均匀的骰子,掷得的点数是奇数;B.某种彩票中奖率是1%,则买这种彩票100张一定会中奖;C.掷一枚硬币,正面朝上;D.任意画一个三角形,其内角和是180°.二、填空题(每题4分,共24分)13.边心距为的正六边形的半径为_______.14.如图,正方形的边长为8,点在上,交于点.若,则长为__.15.若<2,化简_____________16.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.17.已知中,,的面积为1.(1)如图,若点分别是边的中点,则四边形的面积是__________.(2)如图,若图中所有的三角形均相似,其中最小的三角形面积为1,则四边形的面积是___________.18.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)三、解答题(共78分)19.(8分)仿照例题完成任务:例:如图1,在网格中,小正方形的边长均为,点,,,都在格点上,与相交于点,求的值.解析:连接,,导出,再根据勾股定理求得三角形各边长,然后利用三角函数解决问题.具体解法如下:连接,,则,,根据勾股定理可得:,,,,是直角三角形,,即.任务:(1)如图2,,,,四点均在边长为的正方形网格的格点上,线段,相交于点,求图中的正切值;(2)如图3,,,均在边长为的正方形网格的格点上,请你直接写出的值.20.(8分)解方程:;21.(8分)已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3),D(﹣1,1)是否在该函数图象上,并说明理由.22.(10分)图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点.线段AB的端点均在格点上,按下列要求画出图形.(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.23.(10分)计算:(1);(2)解方程24.(10分)如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.25.(12分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.26.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.
参考答案一、选择题(每题4分,共48分)1、C【详解】解:∵反比例函数的图象在一、三象限,∴k>0,∵BC∥x轴,AC∥y轴,∴S△AOD=S△BOE=k,∵反比例函数及正比例函数的图象关于原点对称,∴A、B两点关于原点对称,∴S矩形OECD=1△AOD=k,∴S△ABC=S△AOD+S△BOE+S矩形OECD=1k=4,解得k=1.故选C.【点睛】本题考查反比例函数的性质.2、A【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】由题意可知:,解得:且,故选A.【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.3、C【分析】如果人参加了这次聚会,则每个人需握手次,人共需握手次;而每两个人都握了一次手,因此一共握手次.【详解】设人参加了这次聚会,则每个人需握手次,依题意,可列方程.故选C.【点睛】本题主要考查一元二次方程的应用.4、C【分析】连接OE、OD,由正六边形的特点求出判断出△ODE的形状,作OH⊥ED,由特殊角的三角函数值求出OH的长,利用三角形的面积公式即可求出△ODE的面积,进而可得出正六边形ABCDEF的面积.【详解】解:如图示,连接OE、OD,
∵六边形ABCDEF是正六边形,
∴∠DEF=120°,
∴∠OED=60°,
∵OE=OD=R,
∴△ODE是等边三角形,
作OH⊥ED,则∴∴故选:C.【点睛】本题考查了正多边形和圆的知识,理解正六边形被半径分成六个全等的等边三角形是解答此题的关键.5、B【分析】由已知条件可得出,再根据一元二次方程的根与系数的关系,,分别得出四个方程的两个根的和与积,即可得出答案.【详解】解:∵,∴A.,方程的两个根的和为-3,积为-2,选项错误;B.,方程的两个根的和为3,积为2,选项正确;C.,方程的两个根的和为-3,积为2,选项错误;D.,方程的两个根的和为3,积为-2,选项错误;故选:B.【点睛】本题考查的知识点是根与系数的关键,熟记求根公式是解此题的关键.6、A【分析】根据作图步骤进行分析即可解答;【详解】解:∵第一步是以为圆心,任意长为半径画弧,分别交于点∴AE=AF∵二步是分别以为圆心,以大于长为半径画弧,两圆弧交于点,连接,∴CE=DE,AD=AD∴根据SSS可以判定△AFD≌△AED∴(全等三角形,对应角相等)故答案为A.【点睛】本题考查的是用尺规作图做角平分线,明确作图步骤的依据是解答本题的关键.7、D【解析】直接利用顶点式的特点写出顶点坐标.【详解】因为y=2(x+1)2-5是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-1,5).故选:D.【点睛】主要考查了求抛物线的顶点坐标的方法,熟练掌握顶点式的特点是解题的关键.8、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.9、B【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.10、B【分析】先把常数项移到方程右侧,两边加上4,利用完全平方公式得到(x-2)2=1,从而得到m=-2,n=1,然后计算m+n即可.【详解】x2-4x+3=0,
x2-4x=-3
x2-4x+4=-3+4,
(x-2)2=1,
即n=1.
故选B.【点睛】本题考查了解一元二次方程的应用,解题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).11、C【解析】A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四边形AEDF是平行四边形;即A正确;B选项,∵四边形AEDF是平行四边形,∠BAC=90°,∴四边形AEDF是矩形;即B正确;C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.故选C.12、D【分析】直接利用随机事件以及概率的意义分别分析得出答案.【详解】解:A、投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件,不合题意;B、某种彩票中奖率是1%,则买这种彩票100张有可能会中奖,不合题意;C、掷一枚硬币,正面朝上,是随机事件,不合题意;D、任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选D.【点睛】本题主要考查了概率的意义以及随机事件,解决本题的关键是要正确区分各事件的意义.二、填空题(每题4分,共24分)13、8【分析】根据正六边形的性质求得∠AOH=30°,得到AH=OA,再根据求出OA即可得到答案.【详解】如图,正六边形ABCDEF,边心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即该正六边形的半径为8,故答案为:8.【点睛】此题考查正六边形的性质,直角三角形30度角的性质,勾股定理,正确理解正六边形的性质是解题的关键.14、6【分析】根据正方形的性质可得OC∥AB,OB=,从而证出△COQ∽△PBQ,然后根据相似三角形的性质即可求出,从而求出的长.【详解】解:∵正方形的边长为8,∴OC∥AB,OB=∴△COQ∽△PBQ∴∴∴故答案为:6.【点睛】此题考查的是正方形的性质、相似三角形的判定及性质,掌握正方形的性质、利用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.15、2-x.【分析】直接利用二次根式的性质化简求出答案.【详解】解:∵x<2,∴x-2<0,故答案是:2-x.【点睛】此题主要考查了二次根式的性质与化简,正确把握二次根式的性质是解题关键.16、【解析】试题分析:列表得:
黑1
黑2
白1
白2
黑1
黑1黑1
黑1黑2
黑1白1
黑1白2
黑2
黑2黑1
黑2黑2
黑2白1
黑2白2
白1
白1黑1
白1黑2
白1白1
白1白2
白2
白2黑1
白2黑2
白2白1
白2白2
共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.17、31.5;26【分析】(1)证得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方及△ABC的面积为1,求得△ADE的面积,用大三角形的面积减去小三角形的面积,即可得答案;(2)利用△AFH∽△ADE得到,设,,则,解得,从而得到,然后计算两个三角形的面积差得到四边形DBCE的面积.【详解】(1)∵点D、E分别是边AB、AC的中点,
∴DE∥BC,
∴△ADE∽△ABC,
∵点D、E分别是边AB、AC的中点,
∴,∴,
∵,
∴,
∴;(2)如图,
根据题意得,∴,设,,∴,解得,∴,∴.
【点睛】本题考查了相似三角形的判定和性质:有两组角对应相等的两个三角形相似.利用相似三角形的面积比等于相似比的平方是解题的关键.18、或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有AC=AB=×10=,当AC<BC时,则有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC长为cm或cm.故答案为:或【点睛】本题考查了黄金分割点的概念.注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.三、解答题(共78分)19、(1)2;(2)1.【分析】(1)如图所示,连接,,与交于点,则,可得出,再证明是直角三角形即可得出;(2)连接BC,根据勾股定理可得AB,AC,BC的值,可判断为等腰直角三角形,即可得出.【详解】解:(1)如图所示,连接,,与交于点,则,,根据勾股定理可得:,,,,是直角三角形,,,.(2)连接BC,根据勾股定理可得:AC==,BC==,AB==.,.为等腰直角三角形.【点睛】本题考查了解直角三角形,构造直角三角形是解题的关键.20、1+、1-【详解】X=1+或者x=1-21、(1);(2)C在,D不在,见解析【分析】(1)根据点A的坐标设出二次函数的顶点式,再代入B的值即可得出答案;(2)将C和D的值代入函数解析式即可得出答案.【详解】解:(1)设二次函数的解析式是,∵二次函数的顶点坐标为∴又经过点∴代入得:解得:∴函数解析式为:(2)将x=2代入解析式得∴点在该函数图象上将x=-1代入解析式得∴点不在该函数图象上【点睛】本题考查的是待定系数法求函数解析式,解题关键是根据顶点坐标设出顶点式.22、(1)如图①点C即为所求作的点;见解析;(2)如图②,点D即为所求作的点,见解析.【分析】(1)在图①中找到两个格点C,使∠BAC是锐角,且tan∠BAC=;(2)在图②中找到两个格点D,使∠ADB是锐角,且tan∠ADB=1.【详解】解:(1)如图①点C即为所求作的点;(2)如图②,点D即为所求作的点.【点睛】本题考查了作图——应用与设计作图,解直角三角形.解决本题的关键是准确画图.23、(1);(2)【分析】(1)先把特殊角的三角函数值代入原式,然后再计算;
(2)利用配方法求解即可.【详解】解:(1)原式(2)∵,∴,即,则,∴.【点睛】本题考查了特殊角的三角函数值以及用因式分解法解方程.记住特殊角的三角函数值是解题关键,24、(1)m=2;(2)P(1+,-9)或P(1-,-9)【解析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可.【详解】解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2(2)由,得,,∴D(,-),∵S△ABP=4S△ABD,∴AB×|yP|=4×AB×,∴|yP|=9,yP=±9,当y=9时,-x2+2x+3=9,无实数解,当y=-9时,-x2+2x+3=-9,解得:x1=1+,x2=1-,∴P(1+,-9)或P(1-,-9).25、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;
(3)连接AD,BE,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届四川省眉山市仁寿一中南校区物理高一上期末调研试题含解析
- 租赁合同附件格式
- 别墅房屋租赁合同样本
- 商业店铺认购合同
- 土建工程国际竞争性招标合同
- 合作协议范本-合同范本
- 2024年专职消防员服务合同范本
- 医院租赁服务合同精简版2024年有效
- 2024年某大型水电站建设总承包合同
- 2025届陕西省旬阳中学物理高三上期中质量跟踪监视试题含解析
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- 11.2 树立正确的人生目标 课件- 2024-2025学年统编版道德与法治七年级上册
- 2024小学数学义务教育新课程标准(2022版)必考题库与答案
- 特种玻璃课件
- 工厂员工考勤制度范本
- 第三单元 资产阶级民主革命与中华民国的建立 教学设计 2024-2025学年部编版八年级历史上学期
- 英汉笔译智慧树知到答案2024年温州大学
- 2024年全国职业院校技能大赛高职组(智能节水系统设计与安装赛项)考试题库-下(多选、判断题)
- 2024信息咨询服务合同
- 2024新教科版一年级科学上册第二单元《我们自己》全部课件
- 2024至2030年中国岩土工程市场深度分析及发展趋势研究报告
评论
0/150
提交评论