版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省巴中市南江县第三中学2021-2022学年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若关于的不等式的解为或,则的取值为(
)
A.2
B.
C.-
D.-2参考答案:D2.在△ABC中,设角A,B,C的对边分别为a,b,c,已知b2﹣bc﹣2c2=0,,,则b=()A.2 B.4 C.3 D.5参考答案:B【考点】解三角形.【专题】计算题.【分析】由已知的等式分解因式,求出b与c的关系,用c表示出b,然后根据余弦定理表示出cosA,把a与cosA的值代入即可得到b与c的关系式,将表示出的含c的式子代入即可得到关于b的方程,求出方程的解即可得到b的值.【解答】解:由b2﹣bc﹣2c2=0因式分解得:(b﹣2c)(b+c)=0,解得:b=2c,b=﹣c(舍去),又根据余弦定理得:cosA===,化简得:4b2+4c2﹣24=7bc,将c=代入得:4b2+b2﹣24=b2,即b2=16,解得:b=4或b=﹣4(舍去),则b=4.故选B【点评】此题考查了余弦定理,及等式的恒等变形.要求学生熟练掌握余弦定理的特征及等式的恒等变换.由已知等式因式分解得到b与c的关系式是本题的突破点.3.给定一组函数解析式:如图所示一组函数图象.图象对应的解析式号码顺序正确的是(
)A.⑥③④②⑦①⑤ B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤ D.⑥④③②⑦⑤①参考答案:C4.双曲线(a>0,b>0)的左、右焦点分别为F1、F2,过点F1作倾斜角为30°的直线l,l与双曲线的右支交于点P,若线段PF1的中点M落在y轴上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±2x参考答案:C【考点】直线与圆锥曲线的关系;双曲线的简单性质.【分析】由于线段PF1的中点M落在y轴上,连接MF2,则|MF1|=|MF2|=|PM|=|PF1|?△PF1F2为直角三角形,△PMF2为等边三角形,于是|PF1|﹣|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a?c=a,由c2=a2+b2可求得b=a,于是双曲线的渐近线方程可求.【解答】解:连接MF2,由过点PF1作倾斜角为30°,线段PF1的中点M落在y轴上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2为等边三角形,△PF1F2为直角三角形,∵是|PF1|﹣|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴双曲线(a>0,b>0)的渐近线方程为:y=±=±x.
故选C.【点评】本题考查直线与圆锥曲线的位置关系,关键是对双曲线定义的灵活应用及对三角形△PMF2为等边三角形,△PF1F2为直角三角形的分析与应用,属于难题.5.在同一坐标系中,将曲线变为曲线的伸缩变换是()A.
B.
C.
D.参考答案:B6.过定点(1,2)作两直线与圆相切,则k的取值范围是A
k>2
B
-3<k<2
C
k<-3或k>2
D
以上皆不对参考答案:解析:D易错原因:忽略题中方程必须是圆的方程,有些学生不考虑7.下列不等式中成立的是()A.若,则B.若,则C.若,则D.若,则参考答案:D8.以下给出的是计算的值的一个程序框图(如图所示),其中判断框内应填入的条件是(
)A.i>10B.i<10C.i<20D.I>20参考答案:A9.若函数的图象在点处的切线方程是,则(
)A.0 B.2 C.-4 D.4参考答案:C【分析】由切线方程可以得到,从而可求两者之和.【详解】因为函数的图象在点处的切线方程是,所以,所以,故选C.【点睛】本题考查导数的几何意义,属于基础题.10.(B)若,,且和的等差中项是1,则的最小值是(
)A. B. C. D.1参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.展开式中二项式系数最大的项为
.(求出具体的项)参考答案:略12.下列说法中正确的有________.(写出所有正确说法的序号)①共线向量就是向量所在的直线重合;②长度相等的向量叫做相等向量;③零向量的长度为零;④共线向量的夹角为0°.参考答案:③13.下面的程序运行后的结果为__________(其中:“(a+j)mod
5”表示整数(a+j)除以5的余数)参考答案:014.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80人,则n=
.参考答案:19215.已知抛物线的焦点和双曲线的一个焦点重合,求抛物线的标准方程.
参考答案:略16.数列
猜想数列的通项公式
______.参考答案:【分析】拆解数列各项,观察得到规律,从而可猜想得到通项公式.【详解】根据数列即:猜想数列的通项公式为:本题正确结果:【点睛】本题考查归纳推理的知识,属于基础题.17.如果关于x的不等式的解集为,则实数a的取值范围是
.参考答案:-1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C:,直线L:(1)求证:对m,直线L与圆C总有两个交点;(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.参考答案:解:(2)
(3),得,
19.已知命题p:函数f(x)=lg(x2+mx+m)的定义域为R,命题q:函数g(x)=x2﹣2x﹣1在[m,+∞)上是增函数.(Ⅰ)若p为真,求m的范围;(Ⅱ)若“p∨q”为真命题,“p∧q”为假命题,求m的取值范围.参考答案:【考点】复合命题的真假.【分析】(Ⅰ)根据对数函数以及二次函数的性质得到关于m的不等式,解出即可;(Ⅱ)求出q为真时的m的范围,根据p,q中一真一假,得到关于m的不等式组,解出即可.【解答】解:(Ⅰ)若p为真,x2+mx+m>0恒成立,…(1分)所以△=m2﹣4m<0,…(2分)所以0<m<4.…(Ⅱ)因为函数g(x)=x2﹣2x﹣1的图象是开口向上,对称轴为x=1的抛物线,所以,若q为真,则m≥1.…若p∨q为真,p∧q为假,则p,q中一真一假;…(6分)∴或,…(10分)所以m的取值范围为{m|0<m<1或m≥4}.…(12分)【点评】本题考查了对数函数、二次函数的性质,考查复合命题的判断,是一道中档题.20.2017年,在国家创新驱动战略的引领下,北斗系统作为一项国家高科技工程,一个开放型创新平台,1400多个北斗基站遍布全国,上万台套设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以到厘米或毫米级。最近北斗三号工程耗资9万元建成一小型设备,已知这台设备从启用的第一天起连续使用,第n天的维修保养费为元,使用它直至“报废最合算”(所谓“报废最合算”是指使用这台仪器的平均每天耗资最少)为止,一共使用了多少天,平均每天耗资多少钱?参考答案:设一共使用了天,平均每天耗资为元,则(3分)(5分)当且仅当时,(8分)即时取得最小值399.75(元)(11分),所以一共使用了600天,平均每天耗资399.75元————(12分)21.(原创)(本小题满分12分)函数,其中为实常数。(1)讨论的单调性;(2)不等式在上恒成立,求实数的取值范围;(3)若,设,。是否存在实常数,既使又使对一切恒成立?若存在,试找出的一个值,并证明;若不存在,说明理由。参考答案:(1)定义域为,①当时,,在定义域上单增;②当时,当时,,单增;当时,,单减。增区间:,减区间:。综上可知:当时,增区间,无减区间;当时,增区间:,减区间:。(2)对任意恒成立,令,,在上单增,,,故的取值范围为。(3)存在,如等。下面证明:及成立。①先证,注意,这只要证(*)即可,容易证明对恒成立(这里证略),取即可得上式成立。让分别代入(*)式再相加即证:,于是。②再证,法一:只须证,构造证明函数不等式:,令,,当时,在上单调递减,又当时,恒有,即恒成立。,取,则有,让分别代入上式再相加即证:,即证。法二:,,又故不等式成立。(注意:此题也可用数学归纳法!)22.已知二次函数满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度房产项目结算合同2篇
- 二零二四年度劳动合同的薪资福利条款2篇
- 直饮水设备租赁合同
- 有限空间作业施工合同
- 全新化工企业生产与原料采购合同(2024版)3篇
- 2024年度广告发布合同服务内容扩展及合同属性3篇
- 地坪漆工程施工承包合同
- 二零二四年度商标许可合同标的为知名品牌3篇
- 2024年物流机器人项目资金筹措计划书代可行性研究报告
- 二零二四年度健身服务合同的服务内容和期限2篇
- 2024年东南亚健身房和俱乐部健身跟踪器市场深度研究及预测报告
- 2024-2030年塔格糖行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 《中国传统建筑》课件-中国民居建筑
- 家庭教育主题家长会(3篇模板)
- 第13课 太空新居(教学设计)2023-2024学年美术五年级上册 人教版
- 广东省医疗收费项目《一、综合医疗服务类》
- 物流生涯职业规划总结报告
- 基于STM32的车辆综合无线监控系统设计
- JBT 8881-2011 滚动轴承 零件渗碳热处理 技术条件
- 医疗生物技术专业
- 希腊神话-英文版-人物关系介绍
评论
0/150
提交评论