浙江省台州市温岭市箬横镇东浦中学2022-2023学年数学八上期末经典模拟试题含解析_第1页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年数学八上期末经典模拟试题含解析_第2页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年数学八上期末经典模拟试题含解析_第3页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年数学八上期末经典模拟试题含解析_第4页
浙江省台州市温岭市箬横镇东浦中学2022-2023学年数学八上期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知关于的分式方程的解是非负数,则的取值范圈是()A. B. C.且 D.或2.如图,,交于点,,,则的度数为().A. B. C. D.3.如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A.1 B.3 C.3 D.4.下列命题的逆命题是假命题的是()A.有两个角相等的三角形是等腰三角形B.对顶角相等C.等边三角形的三个内角相等D.线段垂直平分线上的点到线段两端的距离相等5.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数6.下列图案中,是轴对称图形的是()A. B. C. D.7.如图、相交于点,,若用“”证还需()A. B. C. D.8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,已知,,,要在长方体上系一根绳子连接,绳子与交于点,当所用绳子最短时,的长为()A.8 B. C.10 D.10.如图,边长为2m+3的正方形纸片剪出一个边长为m+3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则拼成长方形的面积是()A. B.C.m D.二、填空题(每小题3分,共24分)11.在学校文艺节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是,,那么身高更整齐的是________填甲或乙队.12.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是_____.13.在Rt△ABC中,∠ACB=90°,D为AB上的中点,若CD=5cm,则AB=_____________cm.14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为_____.15.若,则的值是__________.16.计算:__________________.17.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等______.18.若分式的值为0,则的值为____.三、解答题(共66分)19.(10分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)20.(6分)解方程组:.21.(6分)解方程组:(1)(2)22.(8分)如图,平面直角坐标系中,点A在第四象限,点B在x轴正半轴上,在△OAB中,∠OAB=90°,AB=AO=6,点P为线段OA上一动点(点P不与点A和点O重合),过点P作OA的垂线交x轴于点C,以点C为正方形的一个顶点作正方形CDEF,使得点D在线段CB上,点E在线段AB上.(1)①求直线AB的函数表达式.②直接写出直线AO的函数表达式;(2)连接PF,在Rt△CPF中,∠CFP=90°时,请直接写出点P的坐标为;(3)在(2)的前提下,直线DP交y轴于点H,交CF于点K,在直线OA上存在点Q.使得△OHQ的面积与△PKE的面积相等,请直接写出点Q的坐标.23.(8分)如图,在中,,,以为一边向上作等边三角形,点在垂直平分线上,且,连接,,.(1)判断的形状,并说明理由;(2)求证:;(3)填空:①若,相交于点,则的度数为______.②在射线上有一动点,若为等腰三角形,则的度数为______.24.(8分)已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.25.(10分)计算:(1)(2)先化简,再求值:[(2m+n)(2m-n)+(m+n)2-2(2m2-mn)]÷(-4m),其中m=1,n=.26.(10分)第16届省运会在我市隆重举行,推动了我市各校体育活动如火如荼的开展,在某校射箭队的一次训练中,甲,乙两名运动员前5箭的平均成绩相同,教练将两人的成绩绘制成如下尚不完整的统计图表.乙运动员成绩统计表(单位:环)第1次第2次第3次第4次第5次81086(1)甲运动员前5箭射击成绩的众数是环,中位数是环;(2)求乙运动员第5次的成绩;(3)如果从中选择一个成绩稳定的运动员参加全市中学生比赛,你认为应选谁去?请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】先解分式方程,再根据解是非负数可得不等式,再解不等式可得.【详解】方程两边乘以(x-1)得所以因为方程的解是非负数所以,且所以且故选:C【点睛】考核知识点:解分式方程.去分母,解分式方程,根据方程的解的情况列出不等式是关键.2、A【分析】由和,可得到;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵∴∴∴故选:A.【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.3、B【解析】利用等边三角形的性质得出C点位置,进而求出OC的长.【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC是等边三角形,∴CE=AC×sin60°=,AE=BE,∵∠AOB=90°,∴EOAB,∴EC-OE≥OC,∴当点C,O,E在一条直线上,此时OC最短,故OC的最小值为:OC=CE﹣EO=3故选B.【点睛】本题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.4、B【分析】先交换命题的题设与结论得到四个命题的逆命题,然后根据等腰三角形的性质、对顶角的定义、等边三角形的判定方法、线段的垂直平分线定理的逆定理对四个逆命题进行判断.【详解】解:A、有两个角相等的三角形是等腰三角形的逆命题为等腰三角形的两底角相等,此逆命题为真命题;B、对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题;C、等边三角形的三个内角相等的逆命题为三个内角相等的三角形为等边三角形,此逆命题为真命题;D、线段垂直平分线上的点到线段两端的距离相等的逆命题为到线段两端的距离相等的点在线段垂直平分线上,此逆命题为真命题.故选:B.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5、B【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.6、D【分析】根据轴对称图形的定义:“把一个图形沿某条直线对折,直线两旁的部分能完全重合”可以得到答案.【详解】解:轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,所以A,B,C沿一条直线对折后都不能满足直线两旁的部分能完全重合,所以都不是轴对称图形,只有D符合.故选D.【点睛】本题考查的是“轴对称图形的定义”的应用,所以熟练掌握概念是关键.7、C【分析】利用对顶角相等,则要根据“ASA”证△ABO≌△DCO需添加对应角∠A与∠D相等.【详解】∵OA=OD,

而∠AOB=∠DOC,

∴当∠A=∠D时,可利用“ASA”判断△ABO≌△DCO.

故选:C.【点睛】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.8、C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S阴影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故选C.考点:勾股定理.9、C【分析】将长方体的侧面展开图画出来,然后利用两点之间线段最短即可确定最短距离,再利用勾股定理即可求出最短距离.【详解】将长方体的侧面展开,如图,此时AG最短由题意可知∴∴故选:C.【点睛】本题主要考查长方体的侧面展开图和勾股定理,掌握勾股定理是解题的关键.10、C【分析】根据题意,利用大正方形的面积减去小正方形的面积表示出长方形的面积,再化简整理即可.【详解】根据题意,得:(2m+3)2-(m+3)2=[(2m+3)+(m+3)][(2m+3)-(m+3)]=(3m+6)m=3m2+6m.故选C.【点睛】本题主要考查平方差公式的几何背景,解决此题的关键是利用两正方形的面积表示出长方形的面积.二、填空题(每小题3分,共24分)11、甲【分析】根据方差的大小关系判断波动大小即可得解,方差越大,波动越大,方差越小,波动越小.【详解】因为,所以甲队身高更整齐,故答案为:甲.【点睛】本题主要考查了方差的相关概念,熟练掌握方差与数据波动大小之间的关系是解决本题的关键.12、1.【分析】根据角平分线上的点到角的两边的距离相等可得点O到AB、AC、BC的距离都相等(即OE=OD=OF),从而可得到的面积等于周长的一半乘以2,代入求出即可.【详解】如下图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,∴OE=OF=OD=2,∵的周长是1,OD⊥BC于D,且OD=2,∴=1,故答案为:1【点睛】本题主要考查了角平分线的性质及三角形面积的求法,熟练掌握角平分线的性质是解决本题的关键.13、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵在Rt△ABC中,∠ACB=90°,D是AB的中点,∴线段CD是斜边AB上的中线;又∵CD=5cm,∴AB=2CD=1cm.故答案是:1.【点睛】本题考查了直角三角形斜边上的中线.直角三角形斜边上的中线等于斜边的一半.14、1;【解析】分析:根据辅助线做法得出CF⊥AB,然后根据含有30°角的直角三角形得出AB和BF的长度,从而得出AF的长度.详解:∵根据作图法则可得:CF⊥AB,∵∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,∵∠CFB=90°,∠B=10°,∴BF=BC=2,∴AF=AB-BF=8-2=1.点睛:本题主要考查的是含有30°角的直角三角形的性质,属于基础题型.解题的关键就是根据作图法则得出直角三角形.15、49【分析】根据平方差公式把原式进行因式分解,把整体代入分解后的式子,化简后再次利用整体代入即可得.【详解】,原式,故答案为:49.【点睛】考查了“整体代换”思想在因式分解中的应用,平方差公式,熟记平方差公式,通过利用整体代入式解题关键.16、x1-y1【分析】根据平方差公式(a+b)(a-b)=a1-b1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【详解】x1-y1.故答案为:x1-y1.【点睛】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.17、1或6【解析】试题解析:根据题意画出图形,如图所示,如图1所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=1;如图2所示,AB=1,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或1.18、2【分析】先进行因式分解和约分,然后求值确定a【详解】原式=∵值为0∴a-2=0,解得:a=2故答案为:2【点睛】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立三、解答题(共66分)19、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【分析】(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.【详解】(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.【点睛】本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20、【分析】运用加减消元法求解即可.【详解】解:①②得,解得.将代入②得,解得原方程组的解为【点睛】此题考查了解二元一次方程组,解二元一次方程组有两种方法:代入消元法和加减消元法.21、(1);(2)【分析】(1)利用加减法消元法和代入消元法求解即可;(2)先把②去分母,然后利用加减法消元法和代入消元法求解即可;【详解】(1),由②得③,③代入①得,解得,把代入③得,∴方程组的解是;(2)方程组可化为,①+②得,解得,把代入①得,解得,∴原方程组的解是.【点睛】本题主要考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.22、(1)①y=x﹣12;②y=﹣x;(2)(3,﹣3);(3)(2,﹣2)或(﹣2,2)【分析】(1)①利用等腰直角三角形的性质可以得到点A和点B的坐标,从而根据待定系数法求得直线AB的函数表达式;②根据点A和点O的坐标可以求得直线AO的表达式;(2)根据题意画出图形,首先得出点P、F、E三点共线,然后根据正方形的性质得出PE是△OAB的中位线,即点P为OA的中点,则点P的坐标可求;(3)根据题意画出图形,然后求出直线PD的解析式,得到点H的坐标,根据(2)中的条件和题意,可以求得△PKE的面积,再根据△OHQ的面积与△PKE的面积相等,可以得到点Q横坐标的绝对值,由点Q在直线AO上即可求得点Q的坐标.【详解】解:(1)①∵在△OAB中,∠OAB=90°,AB=AO=,∴△AOB是等腰直角三角形,OB=,∴∠AOB=∠ABO=45°,∴点A的坐标为(6,﹣6),点B的坐标为(12,0),设直线AB的函数表达式为y=kx+b,,得,即直线AB的函数表达式是y=x﹣12;②设直线AO的函数表达式为y=ax,6a=﹣6,得a=﹣1,即直线AO的函数表达式为y=﹣x,(2)点P的坐标为(3,﹣3),理由:如图:∵在Rt△CPF中,∠CFP=90°,∠CFE=90°,∴点P、F、E三点共线,∴PE∥OB,∵四边形CDEF是正方形,∠OPC=90°,∠COA=45°,∴CF=PF=AF=EF,∴PE是△OAB的中位线,∴点P为OA的中点,∴点P的坐标为(3,﹣3),故答案为:(3,﹣3);(3)如图,在△PFK和△DCK中,∴△PFK≌△DCK(AAS),∴CK=FK,则由(2)可知,PE=6,FK=1.5,BD=3∴点D(9,0)∴△PKE的面积是=4.5,∵△OHQ的面积与△PKE的面积相等,∴△OHQ的面积是4.5,设直线PD的函数解析式为y=mx+n∵点P(3,﹣3),点D(9,0)在直线PD上,∴,得,∴直线PD的函数解析式为y=,当x=0时,y=-,即点H的坐标为,∴OH=设点Q的横坐标为q,则,解得,q=±2,∵点Q在直线OA上,直线OA的表达式为y=﹣x,∴当x=2时,y=﹣2,当x=﹣2时,x=2,即点Q的坐标为(2,﹣2)或(﹣2,2),【点睛】本题主要考查等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,待定系数法,勾股定理,掌握等腰直角三角形的性质,正方形的性质,全等三角形的判定及性质,待定系数法,勾股定理是解题的关键,第(2)(3)问的难点在于需要先根据题意画出相应的图形.23、(1)△CBE是等边三角形理由见解析;(2)见解析;(3)①60º,②15º或60º或105º【分析】(1)由垂直平分线的性质可得EC=EB,再算出∠CBE=60°,可判定;(2)通过证明△ABE≌△DBC可得;(3)①由(2)中全等可得∠EAB=∠CDB,再根据三角形内角和可得∠AFD的度数;②分PB=PB,BP=BC,CP=CB三种情况讨论,通过等腰三角形的性质,借助∠ABC的度数计算∠ACP的度数.【详解】解:(1)△CBE是等边三角形理由如下:∵点E在BC垂直平分线上∴EC=EB∵EB⊥AB∴∠ABE=90º∵∠ABC=30º∴∠CBE=60º∴△CBE是等边三角形(2)∵△ABD是等边三角形∴AB=DB,∠ABD=60º∵∠ABC=30º∴∠DBC=90º∵EB⊥AB∴∠ABE=90º∴∠ABE=∠DBC由(1)可知:△CBE是等边三角形∴EB=CB∴△ABE≌△DBC(SAS)∴AE=DC(3)①设AB与CD交于点G,∵△ABE≌△DBC∴∠EAB=∠CDB,又∵∠AGC=∠BGD∴∠AFD=∠ABD=60°.②∵△BCP为等腰三角形,如图,当BC=BP时,∠ABC=∠BCP+∠BPC=30°,∴∠BCP=15°,∴∠ACP=90°+15°=105°;当PC=PB时,∵∠ABC=30°,∴∠PCB=30°,∵∠ACB=90°,∴∠ACP=60°;当BP=BC时,∵∠ABC=30°,∴∠PCB=∠CPB=(180°-30°)=75°,∴∠ACP=90°-75°=15°.综上:∠ACP的度数为15º或60º或105º.【点睛】本题考查了垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质,综合性较强,解题时要善于利用已知条件,并且考虑多种情况分类讨论.24、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=12代入(1)中函数关系即可得出x的值,进而得出y的值;(4)利用描点法画出函数图象即可.【详解】解:(1)∵A点和P点的坐标分别是(8,0)、(x,y),∴S=×8×y=4y.∵x+y=12,∴y=12−x.∴S=4(12−x)=48−4x,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论