下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市会泽县第三中学2021-2022学年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在下列区间中函数的零点所在的区间为
A. B.
C.
D.参考答案:B略2.给出四个函数,分别满足①;②;③;④,又给出四个函数的图象如下:则正确的配匹方案是 (
)A.①—M②—N
③—P
④—Q B.①—N
②—P
③—M
④—QC.①—P
②—M
③—N
④—Q D.①—Q
②—M
③—N
④—P参考答案:D略3.下列命题中,真命题的是(
) A.?x∈R,x2>0 B.?x∈R,﹣1<sinx<1 C.?x0∈R,<0 D.?x0∈R,tanx0=2参考答案:D考点:特称命题;全称命题.专题:简易逻辑.分析:根据含有量词的命题的判断方法即可得到结论.解答: 解:A.当x=0时,x2>0不成立,即A错误.B.当x=时,﹣1<sinx<1不成立,即B错误.C.?x∈R,2X>0,即C错误.D.∵tanx的值域为R,∴?x0∈R,tanx0=2成立.故选:D.点评:本题主要考查含有量词的命题的真假判断,比较基础.4.若a>0,b>0,a+b=2,则下列不等式不恒成立的是()A.ab≤1 B.a2+b2≥2 C.+≤ D.+≥2参考答案:C【考点】基本不等式.【专题】计算题;转化思想;定义法;不等式.【分析】根据基本不等式判断A,B,D恒成立,对于C,举例即可.【解答】解:对于A,2=a+b≥2,则ab≤1,当且仅当a=b=1取等号,故恒成立;对于B,a2+b2≥2()2=2,当且仅当a=b=1取等号,故恒成立,对于C,令a=b=1,则不成立,对于D.+=≥=2,当且仅当a=b=1取等号,故恒成立,故选:C【点评】本题主要考查了基本不等式的应用问题,也考查了特殊值判断命题真假的问题,是基础题目.5.设集合是 A.{3,0} B.{3,2,0} C.{3,1,0} D.参考答案:C因为,所以,即,所以,所以,即,所以,选C.6.若点(a,b)在y=lgx图像上,a≠1,则下列点也在此图像上的是()A.(,b)
B.(10a,1-b)C.(,b+1)
D.(a2,2b)参考答案:D7.已知f(x)=1+2x-x2,那么g(x)=f[f(x)](
)
A.在区间(-2,1)上单调递增
B.在(0,2)上单调递增
C.在(-1,1)上单调递增
D.在(1,2)上单调递增参考答案:答案:D8.若全集U={1,2,3,4,5,6},M={},N={},则集合{5,6}等于()A.M∪N B.M∩NC.(?UM)∪(?UN)
D.(?UM)∩(?UN)参考答案:【知识点】补集及其运算;并集及其运算.【答案解析】D解析:解:由题意全集观察知,集合,又
∴.故选D.【思路点拨】利用直接法求解.观察发现,集合恰是的补集,再由选出答案.9.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如图:A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定参考答案:D由茎叶图甲极差为47-18=29,乙的极差是33-17=16,A正确;甲中位数是30,乙中位数是26,B正确;甲均值为,乙均值为25,C正确,那么只有D不正确,事实上,甲的方差大于乙的方差,应该是乙成绩稳定.故选D.
10.已知i是虚数单位,则等于A. B. C. D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.设变量x、y满足约束条件,则目标函数z=2x+y的取值范围是.参考答案:[3,9]【考点】简单线性规划的应用.【分析】本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值、及最小值,进一步线出目标函数的值域.【解答】解:约束条件对应的平面区域如下图示:由图易得目标函数z=2x+y在(1,1)处取得最小值3在(3,3)处取最大值9故Z=2x+y的取值范围为:[3,9]故答案为:[3,9]12.展开式中不含项的系数的和为
.参考答案:013.已知点A(m,0)(m∈R)和双曲线x2﹣y2=1右支上的两个动点B,C,在动点B,C运动的过程中,若存在三个等边三角形ABC,则点A横坐标的取值范围是.参考答案:(,+∞)∪(﹣∞,﹣)【考点】KC:双曲线的简单性质.【分析】讨论当直线BC与x轴垂直时,对任一个m,均有ABC为等边三角形;设直线BC的方程为y=kx+t(k≠0),代入双曲线的方程,运用韦达定理和中点坐标公式、以及两直线垂直的条件:斜率之积为﹣1,结合等边三角形的高与边长的关系,由不等式的性质,计算即可得到所求范围.【解答】解:当直线BC与x轴垂直时,对任一个m,均有ABC为等边三角形;若BC与x轴不垂直时,设直线BC的方程为y=kx+t(k≠0),设B(x1,y1),C(x2,y2),,整理得:(1﹣k2)x2﹣2ktx﹣t2﹣1=0,△=4k2t2+4(1﹣k2)(t2+1)>0,即t2+1﹣k2>0,x1+x2=>0,x1x2=﹣>0,可得k2>1.则BC的中点M为(,),|BC|=?=?,由AM⊥BC,可得kAM=﹣,均有=﹣,均有2kt=m(1﹣k2),即t=,①由A到直线BC的距离为d==??,两边平方,将①代入,化简可得,m2==6+>6,即有m>或m<﹣.由双曲线的对称性可得,存在一个m,即有两个k的值,以及k不存在的情况.故答案为:(,+∞)∪(﹣∞,﹣).14.设非空集合满足:当时,有。则下列三个命题中:①若,则;②若,则;③若,则。正确命题是参考答案:①②③15.设f(x)=5-g(x),且g(x)为奇函数,已知f(-5)=-5,则f(5)的值为
。参考答案:1516.已知△ABC中,角C为直角,D是BC边上一点,M是AD上一点,且|CD|=1,∠DBM=∠DMB=∠CAB,则|MA|=
.参考答案:2【考点】HT:三角形中的几何计算.【专题】11:计算题;35:转化思想;4O:定义法;58:解三角形.【分析】设∠DBM=θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,继而可得=,问题得以解决【解答】解:设∠DBM=θ,则∠ADC=2θ,∠DAC=﹣2θ,∠AMB=﹣2θ,在△CDA中,由正弦定理可得=,在△AMB中,由正弦定理可得=,∴===,从而MA=2,故答案为:2.17.若函数的图像关于原点对称,则
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,集合,,.(1)若,求;(2)命题,命题,若是的必要条件,求实数的取值范围.参考答案:解:(1),
由得,即,所以,所以.(2)因为是的必要条件,所以,所以,因为,所以,所以,解得.略19.设函数.
(Ⅰ)当时,求函数的定义域;
(Ⅱ)若函数的值域为,求实数的取值范围.参考答案:解:(1);
(2).略20.在直角坐标系xOy中,以原点为O极点,以x轴正半轴为极轴,圆C的极坐标方程为ρ=4.(1)将圆C的极坐标方程化为直角坐标方程;(2)过点P(2,0)作斜率为1直线l与圆C交于A,B两点,试求的值.参考答案:【考点】Q4:简单曲线的极坐标方程;J9:直线与圆的位置关系.【分析】(1)圆C的极坐标方程为ρ=4,展开可得:ρ2=4×ρ(cosθ﹣sinθ),利用互化公式即可得出直角坐标方程.(2)直线l的参数方程为:(t为参数),代入上述方程可得:t2+2t﹣4=0.===.【解答】解:(1)圆C的极坐标方程为ρ=4,展开可得:ρ2=4×ρ(cosθ﹣sinθ),可得直角坐标方程:x2+y2﹣4x+4y=0.(2)直线l的参数方程为:(t为参数),代入上述方程可得:t2+2t﹣4=0.t1+t2=﹣2,t1t2=﹣4,则=====.【点评】本题考查了极坐标方程化为参数方程、参数方程化为普通方程及其应用、直线与圆相交弦长问题,考查了推理能力与计算能力,属于中档题.21.如图,AB是⊙O的直径,C,F为⊙O上的点,CA是∠BAF的角平分线,过点C作CD⊥AF交AF的延长线于D点,CM⊥AB,垂足为点M.(1)求证:DC是⊙O的切线;(2)求证:AM?MB=DF?DA.参考答案:【考点】与圆有关的比例线段;圆的切线的判定定理的证明;圆的切线的性质定理的证明.【分析】(1)证明DC是⊙O的切线,就是要证明CD⊥OC,根据CD⊥AF,我们只要证明OC∥AD;(2)首先,我们可以利用射影定理得到CM2=AM?MB,再利用切割线定理得到DC2=DF?DA,根据证明的结论,只要证明DC=CM.【解答】证明:(1)连接OC,∵OA=OC∴∠OAC=∠OCA,∵CA是∠BAF的角平分线,∴∠OAC=∠FAC∴∠FAC=∠OCA,∴OC∥AD.…∵CD⊥AF,∴CD⊥OC,即DC是⊙O的切线.…(2)连接BC,在Rt△ACB中,CM⊥AB,∴CM2=AM?MB.又∵DC是⊙O的切线,∴DC2=DF?DA.∵∠MAC=∠DAC,∠D=∠AMC,AC=AC∴△AMC≌△ADC,∴DC=CM,∴AM?MB=DF?DA…22.椭圆C的中心为坐标原点O,焦点在y轴上,离心率e=,椭圆上的点到焦点的最短距离为1-,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且.(1)求椭圆方程;(2)若,求m的取值范围.参考答案:(1)设C:+=1(a>b>0),设c>0,c2=a2-b2,由条件知a-c=,=,∴a=1,b=c=,故C的方程为:y2+=1
5′(2)由=λ,∴λ+1=4,λ=3或O点与P点重合=
7′当O点与P点重合=时,m=0当λ=3时,直线l与y轴相交,则斜率存在。设l与椭圆C交点为A(x1,y1),B(x2,y2)得(k2+2)x2+2kmx+(m2-1)=0Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0(*)x1+x2=,x1x2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版绿色包装材料研发及推广合同2篇
- 2025年度石料厂产品质量安全承包管理合同范本2篇
- 二零二五年度城市综合体建筑设计合同3篇
- 2025年度高新技术企业知识产权质押担保合同范本3篇
- 二零二五版农村小微企业发展借款合同解析论文3篇
- 二零二五年生物制药工艺技术聘用合同2篇
- 二零二五版股权代持协议签订前的合同谈判注意事项3篇
- 二零二五年度建筑工程安全施工环境保护监理合同3篇
- 二零二五版购房合同违约责任条款解析3篇
- 2025年度紧急物资承揽运输合同3篇
- 停车场施工施工组织设计方案
- GB/T 37238-2018篡改(污损)文件鉴定技术规范
- 普通高中地理课程标准简介(湘教版)
- 河道治理工程监理通知单、回复单范本
- 超分子化学简介课件
- 高二下学期英语阅读提升练习(一)
- 易制爆化学品合法用途说明
- 【PPT】压力性损伤预防敷料选择和剪裁技巧
- 大气喜庆迎新元旦晚会PPT背景
- DB13(J)∕T 242-2019 钢丝网架复合保温板应用技术规程
- 心电图中的pan-tompkins算法介绍
评论
0/150
提交评论