云南省曲靖市富源县富村乡第二中学2022-2023学年高二数学文月考试卷含解析_第1页
云南省曲靖市富源县富村乡第二中学2022-2023学年高二数学文月考试卷含解析_第2页
云南省曲靖市富源县富村乡第二中学2022-2023学年高二数学文月考试卷含解析_第3页
云南省曲靖市富源县富村乡第二中学2022-2023学年高二数学文月考试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市富源县富村乡第二中学2022-2023学年高二数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合A=,B=,函数f(x)=x0∈A,且f[f(x0)]∈A,则x0的取值范围是()A.

B.

C.

D.参考答案:C略2.曲线y=sinx+ex在点(0,1)处的切线方程是()A.x﹣3y+3=0 B.x﹣2y+2=0 C.2x﹣y+1=0 D.3x﹣y+1=0参考答案:C【考点】6H:利用导数研究曲线上某点切线方程.【分析】先求出函数的导函数,然后得到在x=0处的导数即为切线的斜率,最后根据点斜式可求得直线的切线方程.【解答】解:∵y=sinx+ex,∴y′=ex+cosx,∴在x=0处的切线斜率k=f′(0)=1+1=2,∴y=sinx+ex在(0,1)处的切线方程为:y﹣1=2x,∴2x﹣y+1=0,故选C.3.一支田径队有男运动员63人,女运动员45人,用分层抽样方法从全体运动员中抽取一个容量24的样本,则样本中女运动员人数是(

)A.14 B.12 C.10 D.8参考答案:C【分析】由题得样本中女运动员人数为,计算即得解.【详解】由题得样本中女运动员人数是.故选:C【点睛】本题主要考查分层抽样,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.函数的实数解落在的区间是()

参考答案:B略5.在中,,则此三角形解的个数为A.0

B.1

C.2

D.无数个

参考答案:B6.已知直线y=kx是y=lnx的切线,则k的值是()A.e B.﹣e C. D.﹣参考答案:C【考点】导数的几何意义.【分析】欲求k的值,只须求出切线的斜率的值即可,故先利用导数求出在切处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:∵y=lnx,∴y'=,设切点为(m,lnm),得切线的斜率为,所以曲线在点(m,lnm)处的切线方程为:y﹣lnm=×(x﹣m).它过原点,∴﹣lnm=﹣1,∴m=e,∴k=.故选C.【点评】本小题主要考查直线的方程、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.7.曲线y=x2与直线y=2x所围成图形的面积为()A.

B.C. D.参考答案:C【考点】定积分在求面积中的应用.【分析】联立解方程组,得到曲线y=x2及直线y=2x的交点是(0,0)和A(2,4),由此可得两个图象围成的面积等于函数y=2x﹣x2在[0,2]上的积分值,根据定积分计算公式加以计算,即可得到所求面积.【解答】解:由,解得曲线y=x2与直线y=2x的图象交点为(0,0),(2,4)因此,曲线y=x2及直线y=2x所围成的封闭图形的面积是S=(2x﹣x2)dx=(x2﹣x3)=;故选C.【点评】本题考查了定积分的几何意义和定积分计算公式等知识.8.命题“若,则”的逆命题是(

).A.若,则 B.若,则C.若,则 D.若,则参考答案:C命题若“”则“”的逆命题是“”则“”,所以“若,则”的逆否命题是:“若,则”,故选.9.二次函数在区间上单调递减,且,则实数的取值范围(

)A.

B.

C.

D.参考答案:D略10.中,角所对的边分别为,若,则角为(

)A.

B.

C.

D.

参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.正方体的棱长为1,为线段的中点,为线段上的动点,过的平面截该正方体所得的截面记为,则所有正确的命题是_______.①当0<<时,为四边形;②当=时,为等腰梯形;③当=时,与的交点满足=;④当<<1时,为五边形;⑤当=1时,的面积为.参考答案:①②④12.已知为等差数列,,则等于___________参考答案:1

略13.将5个不同的小球放入编号为1,2,3,4,5的5个盒子中,恰好有一个空盒的放法一共有

种。

参考答案:120014.若(1+x)(2﹣x)2015=a0+a1x+a2x2+…+a2015x2015+a2016x2016,则a2+a4+…+a2014+a2016等于.参考答案:﹣22015【考点】二项式定理的应用.【专题】方程思想;转化思想;二项式定理.【分析】(1+x)(2﹣x)2015=a0+a1x+a2x2+…+a2015x2015+a2016x2016,可得:当x=﹣1时,0=a0﹣a1+a2+…﹣a2015+a2016,当x=1时,2=a0+a1+a2+…+a2015+a2016,当x=0时,22015=a0.即可得出.【解答】解:∵(1+x)(2﹣x)2015=a0+a1x+a2x2+…+a2015x2015+a2016x2016,∴当x=﹣1时,0=a0﹣a1+a2+…﹣a2015+a2016,当x=1时,2=a0+a1+a2+…+a2015+a2016,当x=0时,22015=a0.∴a2+a4+…+a2014+a2016=﹣22015.故答案为:﹣22015.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.15.已知是不相等的正数,,则的大小关系是▲.参考答案:略16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.参考答案:17.如图,过抛物线的焦点F的直线交抛物线于点A、B,交其准线于点C,若,且,则此抛物线的方程为_____________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设:实数x满足,:实数x满足.(1)若,且为真,求实数x的取值范围;(2)若其中且是的充分不必要条件,求实数a的取值范围.参考答案:(1)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0

当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4即q为真时实数x的取值范围是2<x<4,若p∧q为真,则p真且q真

∴实数x的取值范围是2<x<3.(2)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,若¬p是¬q的充分不必要条件,则¬p?¬q,且¬q?¬p,设A={x|¬p},B={x|¬q},则A?B,又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x|x≥4或x≤2},则0<a≤2,且3a≥4∴实数a的取值范围是19.(本题12分)

用分析法证明:参考答案:证明:(用分析法)要证原等式,只需证:2cos(α—β)sinα—sin(2α—β)=sinβ①①左边=2cos(α—β)sinα—sin[(α—β)+α]

=2cos(α—β)sinα—sin(α—β)cosα—cos(α—β)sinα

=cos(α—β)sinα—sin(α—β)cosα

=sinβ∴①成立,∴原等式成立。略20.设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.参考答案:【考点】二次函数在闭区间上的最值;二次函数的性质.【分析】(1)若t=1,则f(x)=(x﹣1)2+1,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8等价于M﹣m≤8,结合二次函数的性质可求【解答】解:因为f(x)=x2﹣2tx+2=(x﹣t)2+2﹣t2,所以f(x)在区间(﹣∞,t]上单调减,在区间[t,+∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t﹣x),(1)若t=1,则f(x)=(x﹣1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].

…(3分)(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.①若t=1,则f(x)=(x﹣1)2+1,所以f(x)在区间(﹣∞,1]上单调减,在区间[1,+∞)上单调增.②当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得﹣3≤a≤1,从而0≤a≤1.③当1>a+1,即a<0时,由[f(x)]max=f(a)=(a﹣1)2+1≤5,得﹣1≤a≤3,从而﹣1≤a<0.综上,a的取值范围为区间[﹣1,1].

…(6分)(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8”等价于“M﹣m≤8”.①当t≤0时,M=f(4)=18﹣8t,m=f(0)=2.由M﹣m=18﹣8t﹣2=16﹣8t≤8,得t≥1.从而t∈?.②当0<t≤2时,M=f(4)=18﹣8t,m=f(t)=2﹣t2.由M﹣m=18﹣8t﹣(2﹣t2)=t2﹣8t+16=(t﹣4)2≤8,得4﹣2≤t≤4+2.从而

4﹣2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2﹣t2.由M﹣m=2﹣(2﹣t2)=t2≤8,得﹣2≤t≤2.从而2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18﹣8t.由M﹣m=2﹣(18﹣8t)=8t﹣16≤8,得t≤3.从而t∈?.综上,t的取值范围为区间[4﹣2,2].

…(10分)【点评】本题主要考查了二次函数闭区间上的最值的求解,解题的关键是确定二次函数的对称轴与所给区间的位置关系,体现了分类讨论思想的应用.21.某化工企业2013年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备年的年平均污水处理费用(万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水处理设备?参考答案:(1)即();

(2)由均值不等式得:(万元)

当且仅当,即时取到等号.答:该企业10年后需要重新更换新设备。22.(本小题满分14分)如图,在四棱锥中,四边形是平行四边形,,点E是的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面平面.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论