下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市衡水实验中学2021-2022学年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.)△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于(
).
(A)
(B)
(C)2
(D)参考答案:A略2.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A.105 B.16 C.15 D.1参考答案:C【考点】E7:循环结构.【分析】本循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1),由此能够求出结果.【解答】解:如图所示的循环结构是当型循环结构,它所表示的算式为s=1×3×5×…×(2i﹣1)∴输入n的值为6时,输出s的值s=1×3×5=15.故选C.3.已知AD、BE分别是△ABC的边BC、AC上的中线,且,,则=(
)
A.
B.
C.
D.
参考答案:B略4.(4分)三个数60.7,0.76,log0.76的大小顺序是() A. log0.76<0.76<60.7 B. 0.76<60.7<log0.76 C. 0.76<log0.76<60.7 D. log0.76<60.7<0.76参考答案:A考点: 对数值大小的比较.专题: 函数的性质及应用.分析: 利用指数函数与对数函数的单调性即可得出.解答: ∵60.7>1,0<0.76<1,log0.76<0,∴log0.76<0.76<60.7.故选:A.点评: 本题考查了指数函数与对数函数的单调性,属于基础题.5.已知等比数列的公比,则等于(
)A.
B.
C.
D.参考答案:B6.函数f(x)=x+lnx的零点所在的区间为(
)A.(﹣1,0) B.(0,1) C.(1,2) D.(1,e)参考答案:B【考点】函数零点的判定定理.【专题】常规题型.【分析】令函数f(x)=0得到lnx=﹣x,转化为两个简单函数g(x)=lnx,h(x)=﹣x,最后在同一坐标系中画出g(x),h(x)的图象,进而可得答案.【解答】解:令f(x)=x+lnx=0,可得lnx=﹣x,再令g(x)=lnx,h(x)=﹣x,在同一坐标系中画出g(x),h(x)的图象,可知g(x)与h(x)的交点在(0,1),从而函数f(x)的零点在(0,1),故选B.【点评】本题主要考查函数零点所在区间的求法.属基础题.7.若等边三角形ABC的边长为4,E是中线BD的中点,则?=()A.1 B.﹣1 C.2 D.﹣2参考答案:B【考点】平面向量数量积的运算.【分析】根据等边三角形的性质和向量的数量积公式计算即可.【解答】解:∵等边三角形ABC的边长为4,E是中线BD的中点,∴=﹣=﹣,=﹣(+)=﹣(+),∴?=﹣(﹣)=2=﹣=﹣18. 如果,则的值等于 A.
B.
C.
D. 参考答案:C略9.已知集合,,则(
)A., B.,C., D.,参考答案:C【分析】先求得集合,再判断两个集合之间的关系.【详解】对集合,故存在集合A中的元素-1或2,使得其不属于集合.故选:C.【点睛】本题考查集合之间的关系,属基础题.10.函数y=f(x)(x∈R)的图象如下图所示,则函数g(x)=f(logax)(0<a<1)的单调减区间是()参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则的取值范围为__________.参考答案:【分析】由可以推出,由不等式的性质可以得到的取值范围.【详解】,而,根据不等式的性质可得,所以的取值范围为.【点睛】本题考查了不等式的性质.不等式的性质中没有相除性,可以利用相乘性进行转化,但是应用不等式相乘性时,要注意不等式的正负性.
12.已知以x,y为自变量的目标函数z=kx+y(k>0)的可行域如图阴影部分(含边界),且A(1,2),B(0,1),C(,0),D(,0),E(2,1),若使z取最大值时的最优解有无穷多个,则k=________.参考答案:113.函数的值域为
▲
.参考答案:{-1,3}14.已知向量,满足,与的夹角为60°,则在上的投影是
;参考答案:1试题分析:根据已知条件可知,那么由与的夹角为,可知cos=,故在上的投影是1,答案为1.考点:本试题主要考查了向量的数量积概念和性质,理解其几何意义的运用。点评:解决该试题的关键是求解投影转化为求解数量积除以得到结论。注意数量积的几何意义的运用。
15.已知集合A=则等于参考答案:{-1,1,2}16.已知f(x)是定义在(–∞,+∞)上的函数,m、n∈(–∞,+∞),请给出能使命题:“若m+n>0,则f(m)+f(n)>f(–m)+f(–n)”成立的一个充分条件是__________.注:答案不唯一.参考答案:函数f(x)在(–∞,+∞)上单调递增17.函数f(x)=满足[f(x1)﹣f(x2)](x1﹣x2)<0对定义域中的任意两个不相等的x1,x2都成立,则a的取值范围是.参考答案:(0,]【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】首先判断函数f(x)在R上单调递减,再分别考虑各段的单调性及分界点,得到0<a<1①a﹣3<0②a0≥(a﹣3)×0+4a③,求出它们的交集即可.【解答】解:[f(x1)﹣f(x2)](x1﹣x2)<0对定义域中的任意两个不相等的x1,x2都成立,则函数f(x)在R上递减,当x<0时,y=ax,则0<a<1①当x≥0时,y=(a﹣3)x+4a,则a﹣3<0②又a0≥(a﹣3)×0+4a③则由①②③,解得0<a≤.故答案为:(0,].【点评】本题考查分段函数及运用,考查函数的单调性及应用,注意分界点的情况,考查运算能力,属于中档题和易错题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB上一点(Ⅰ)当点E在AB上移动时,三棱锥D﹣D1CE的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积(Ⅱ)当点E在AB上移动时,是否始终有D1E⊥A1D,证明你的结论.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(I)由于△DCE的体积不变,点E到平面DCC1D1的距离不变,因此三棱锥D﹣D1CE的体积不变.(II)利用正方形的性质、线面垂直的判定余弦值定理可得A1D⊥平面AD1E,即可证明.【解答】解:(I)三棱锥D﹣D1CE的体积不变,∵S△DCE===1,DD1=1.∴===.(II)当点E在AB上移动时,始终有D1E⊥A1D,证明:连接AD1,∵四边形ADD1A1是正方形,∴A1D⊥AD1,∵AE⊥平面ADD1A1,A1D?平面ADD1A1,∴A1D⊥AB.又AB∩AD1=A,AB?平面AD1E,∴A1D⊥平面AD1E,又D1E?平面AD1E,∴D1E⊥A1D.【点评】本题考查了正方形的性质、线面面面垂直的判定与性质定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.19.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。(I)求应从小学、中学、大学中分别抽取的学校数目。(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率。参考答案:(1)3,2,1(2)(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)==.20.定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a?+,(1)当a=﹣时,求函数f(x)在(﹣∞,0)上的值域,并判断函数f(x)在(﹣∞,0)上是否为有界函数,请说明理由;(2)若函数f(x)在[0,+∞)上是以4为上界的有界函数,求实数a的取值范围.参考答案:【考点】函数的值域.【专题】函数的性质及应用.【分析】(1)把a=﹣代入函数的表达式,得出函数的单调区间,结合有界函数的定义进行判断;(2)由题意知,|f(x)|≤4对x∈[0,+∞)恒成立.令,对t∈(0,1]恒成立,设,,求出单调区间,得到函数的最值,从而求出a的值.【解答】解:(1)当时,,令,∵x<0,∴t>1,;∵在(1,+∞)上单调递增,∴,即f(x)在(﹣∞,1)的值域为,故不存在常数M>0,使|f(x)|≤M成立,∴函数f(x)在(﹣∞,0)上不是有界函数;
(2)由题意知,|f(x)|≤4对x∈[0,+∞)恒成立.即:﹣4≤f(x)≤4,令,∵x≥0,∴t∈(0,1]∴对t∈(0,1]恒成立,∴,设,,由t∈(0,1],由于h(t)在t∈(0,1]上递增,P(t)在t∈(0,1]上递减,H(t)在t∈(0,1]上的最大值为h(1)=﹣6,P(t)在[1,+∞)上的最小值为p(1)=2∴实数a的取值范围为[﹣6,2].【点评】本题考查了函数的值域问题,考查了新定义问题,考查了函数的单调性,函数的最值问题,是一道综合题.21.正三棱台中,分别是上、下底面的中心.已知,.(1)求正三棱台的体积;(2)求正三棱台的侧面积.参考答案:(1)正三棱台的上底面积为
下底面积为
2分所以正三棱台的体积为(6分)(2)设的中点分别为则正三棱台的斜高=--------------9分则正三棱台的侧面积(12分)略22.如图,△ABC为等边三角形,EA⊥平面ABC,EA∥DC,EA=2DC,F为EB的中点.(Ⅰ)求证:DF∥平面ABC;(Ⅱ)求证:平面BDE⊥平面AEB.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)取AB的中点G,连结FG,GC,由三角形中位线定理可得FG∥AE,,结合已知DC∥AE,,可得四边形DCGF为平行四边形,得到FD∥GC,由线面平行的判定可得FD∥平面ABC;(2)由线面垂直的性质可得EA⊥面ABC,得到EA⊥GC,再由△ABC为等边三角形,得CG⊥AB,结合线面垂直的判定可得CG⊥平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44727-2024报废机动车回用件拆卸技术规范
- 2024年度新能源项目开发合同项目投资估算与风险评估
- 2024年度版权许可使用合同标的:音乐作品版权3篇
- 泡茶课件教学课件
- 物流信息技术与应用 课件 9.项目九 数据交换与共享技术 下
- 《餐饮单位索证索票》课件
- 2024年度租赁合同租金调整及违约金规定3篇
- 2024年度教育培训与人才输出服务合同2篇
- 《s教学课件选区》课件
- 《公务员保险与福利》课件
- 人教版数学二年级上册-第7单元(认识时间)认识时间(课件)(共19张课件)
- 与工人签订的安全协议书
- JBT 7043-2006 液压轴向柱塞泵
- 西方文明史导论智慧树知到期末考试答案2024年
- 大学生生涯发展展示
- 职业生涯规划-软件测试工程师
- :第四单元《音诗音画》-《沃尔塔瓦河》 课件
- 亲属赠与股权协议书
- 无菌技术课件
- 九年级第二次教师会议课件
- 国家开放大学《监督学》形考任务1-4参考答案
评论
0/150
提交评论