下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市第二十五中学2022-2023学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是(
)
A.假设至少有一个钝角
B.假设至少有两个钝角C.假设没有一个钝角
D.假设没有一个钝角或至少有两个钝角参考答案:B略2.抛物线上一点到直线的距离最短的点的坐标是 (
)A.(1,1)
B.()
C.
D.(2,4)参考答案:A利用数形结合思想,抛物线上到直线的距离最短的点,就是与平行的直线与抛物线的切线的切点,应用导数求切线斜率或运用方程组整理得一元二次方程,由判别式为零,选A。3.在同一坐标系中,将曲线变为曲线的伸缩变换是
参考答案:B4.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为
(
)A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误参考答案:A5.对“a,b,c是不全相等的正数”,给出两个判断:①;②不能同时成立,下列说法正确的是(
)A.①对②错 B.①错②对 C.①对②对
D.①错②错
参考答案:A6.已知集合,,则A∩B=(
)A.{1} B.{2} C.{1,2} D.{1,2,3}参考答案:C【分析】根据交集的定义直接求解即可【详解】,直接求解得【点睛】本题考查集合的交集运算,属于基础题7.若从,,,,,这六个数字中选个数字组成没有重复数字的四位偶数,则这样的四位数一共有(
).A.个 B.个 C.个 D.个参考答案:C个位为时,十,百,千可有种,个位为或时,千位有种,十百有种,∴共(种).8.已知i为虚数单位,复数z满足(1-i)·z=2i,是复数z的共轭复数,则下列关于复数z的说法正确的是(
)A.z=1-i B.C. D.复数z在复平面内表示的点在第四象限参考答案:C【分析】把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案.【详解】复数在复平面内表示的点在第二象限,故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9.设M、N是两个集合,则“M∪N≠?”是“M∩N≠?”的()A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B10.用反证法证明命题“是无理数”时,假设正确的是(
).A.假设是有理数 B.假设是有理数C.假设或是有理数 D.假设是有理数参考答案:D试题分析:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题“是无理数”的假设为“假设是有理数”.考点:反证法.二、填空题:本大题共7小题,每小题4分,共28分11.关于x的方程有两个不相等的实根,则a的取值范围是__________.参考答案:12.直线与圆相交于A、B两点,则
.参考答案:略13.若点P在曲线C1:上,点Q在曲线C2:(x-2)2+y2=1上,点O为坐标原点,则的最大值是
.参考答案:
设,则,.
.(其中)
14.计算定积分(x2+sinx)dx=________.参考答案:15.抛物线上的点到抛物线焦点的距离为3,则|y0|=
.参考答案:16.从下面的等式中,,....
你能猜想出什么结论
.参考答案:17.已知条件p:x≤1,条件q:<1,则p是q的
条件参考答案:充分不必要略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)=﹣3x2+a(6﹣a)x+6.(Ⅰ)解关于a的不等式f(1)>0;(Ⅱ)若不等式f(x)>b的解集为(﹣1,3),求实数a,b的值.参考答案:【考点】一元二次不等式的应用.【分析】(Ⅰ)f(1)>0,即﹣3+a(6﹣a)+6>0,即a2﹣6a﹣3<0,由此可得不等式的解集;(Ⅱ)不等式f(x)>b的解集为(﹣1,3),等价于﹣3x2+a(6﹣a)x+6>b的解集为(﹣1,3),即﹣1,3是方程3x2﹣a(6﹣a)x﹣6+b=0的两个根,利用韦达定理可求实数a,b的值.【解答】解:(Ⅰ)∵f(x)=﹣3x2+a(6﹣a)x+6,f(1)>0∴﹣3+a(6﹣a)+6>0∴a2﹣6a﹣3<0∴∴不等式的解集为(Ⅱ)∵不等式f(x)>b的解集为(﹣1,3),∴﹣3x2+a(6﹣a)x+6>b的解集为(﹣1,3),∴﹣1,3是方程3x2﹣a(6﹣a)x﹣6+b=0的两个根∴∴19.已知抛物线,焦点为F,准线为l,线段OF的中点为G.点P是C上在x轴上方的一点,且点P到l的距离等于它到原点O的距离.(1)求P点的坐标;(2)过点作一条斜率为正数的直线与抛物线C从左向右依次交于A、B两点,求证:.参考答案:(1);(2)详见解析.【分析】(1)由点到的距离等于它到原点的距离,得,又为线段的中点,所以,设点的坐标为,代入抛物线的方程,解得,即可得到点坐标.(2)设直线的方程为,代入抛物线的方程,根据根与系数的关系,求得,,进而得到,进而得到直线和的倾斜角互补,即可作出证明.【详解】(1)根据抛物线的定义,点到的距离等于,因为点到的距离等于它到原点的距离,所以,从而为等腰三角形,又为线段的中点,所以,设点的坐标为,代入,解得,故点的坐标为.(2)设直线的方程为,代入,并整理得,由直线与抛物线交于、两点,得,结合,解得,由韦达定理,得,,,所以直线和的倾斜角互补,从而,结合轴,得,故.【点睛】本题主要考查抛物线的标准方程、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线与抛物线的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x∈(0,a﹣1]有φ′(x)<0,∴φ(x)在∈(0,a﹣1]上单调递减,∴φ(a﹣1)<φ(0)=0即当a>1时存在x>0使φ(x)<0,故知ln(1+x)≥不恒成立,综上可知,实数a的取值范围是(﹣∞,1].(Ⅲ)由题设知,g(1)+g(2)+…+g(n)=,n﹣f(n)=n﹣ln(n+1),比较结果为g(1)+g(2)+…+g(n)>n﹣ln(n+1)证明如下:上述不等式等价于,在(Ⅱ)中取a=1,可得,令则故有,ln3﹣ln2,…,上述各式相加可得结论得证.21.已知棱长为1的正方体ABCD-A1B1C1D1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 铁路工程模板施工合同
- 橄榄球俱乐部急救药箱使用规范
- 救援设备租赁合同
- 汽车报废处理流程
- 高尔夫球场租赁经营合同
- 教育机构服务质量控制
- 教师劳动合同范本科研项目
- 果园管理服务租赁协议
- 信息技术公司员工班车使用指南
- 设计住房屋租赁合同范本
- 人感染禽流感诊疗方案(2024年版)
- 食材配送服务方案投标方案(技术方案)
- 年产15000吨硫酸铝项目环评报告表
- 2023-2024学年湖北省孝感市云梦县八年级(上)期末英语试卷
- 2024年一级注册建筑师理论考试题库ab卷
- 试验检测方案
- 小学数学班级学情分析报告
- IMCA船舶隐患排查表
- 2024年软件开发调试合同样本(二篇)
- 地理月考分析及改进措施初中生
- 乡村篮球比赛预案设计
评论
0/150
提交评论