云南省昆明市明兴学校2023年高一数学理下学期期末试卷含解析_第1页
云南省昆明市明兴学校2023年高一数学理下学期期末试卷含解析_第2页
云南省昆明市明兴学校2023年高一数学理下学期期末试卷含解析_第3页
云南省昆明市明兴学校2023年高一数学理下学期期末试卷含解析_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市明兴学校2023年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为,值域为的“孪生函数”共有(

)A.、4个

B、8个

C、9个

D、12个参考答案:C2.设集合,,则A∩B=(

)

参考答案:A3.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),则函数f(x)的大致图象是()A. B. C. D.参考答案:A【考点】函数的图象.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得函数f(x)的图象关于原点对称,函数在R上单调递增,且增长比较缓慢,从而结合选项得出结论【解答】解:由函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2(x+1),可得函数f(x)的图象关于原点对称,函数在R上单调递增,且增长比较缓慢,结合所给的选项,故选:A.【点评】本题主要考查函数的奇偶性、单调性的应用,函数的图象特征,属于中档题.4.已知函数y=x2﹣2x+3在[0,a](a>0)上最大值是3,最小值是2,则实数a的取值范围是()A.0<a<1 B.0<a≤2 C.1≤a≤2 D.0≤a≤2参考答案: C【考点】3W:二次函数的性质.【分析】先求出函数f(x)的最小,正好为了说明[0,a]包含对称轴,当x=0时y=3,根据对称性可知当x=2时y=3,结合二次函数的图象可求出a的范围.【解答】解:∵函数f(x)=x2﹣2x+3是开口向上的抛物线,对称轴x=1,当x=1时函数取得最小值f(1)=1﹣2+3=2,∵y=x2﹣2x+3在[0,a]上最小值为2,∴a≥1;当x=0时y=3函数y=x2﹣2x+3在(1,+∞)上是增函数,当x=2时y=4﹣4+3=3,当x>2时y>3,∵函数y=x2﹣2x+3在[0,a]上最大值为3,∴a≤2综上所述1≤a≤2.故选:C.【点评】二次函数是最常见的函数模型之一,也是最熟悉的函数模型,解决此类问题要充分利用二次函数的性质和图象.5.三个数,,之间的大小关系是()A..

B.

C.

D.

参考答案:C6.已知点(3,m)到直线x+y﹣4=0的距离等于,则m=()A.3 B.2 C.3或﹣1 D.2或﹣1参考答案:C【考点】点到直线的距离公式.【分析】由题意可得=,解之可得.【解答】解:由题意可得=,即|m﹣1|=2,解得m=3,或m=﹣1故选C【点评】本题考查点到直线的距离公式,属基础题.7.若直线过圆的圆心,则a的值为(

)A.-3

B.-1

C.3

D.1参考答案:D8.若,则(

)A、9

B、

C、

D、3参考答案:A9.方程的解集为,方程的解集为,且,则等于A.21

B.8

C.6

D.7参考答案:A10.已知函数是(-,+)上的增函数,那么实数的取值范围是(

)(A)(1,+)

(B)(-,3)

(C)(1,3)

(D)[,3)参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.实数集中的元素应满足的条件是

.参考答案:且且12.函数的定义域是

.参考答案:[2,+∞)

13.设函数,则函数的零点为▲.参考答案:14.已知函数f(x)=则的值为_____.参考答案:15.已知向量满足,且,,,则

.参考答案:

16.定义运算min。已知函数,则g(x)的最大值为______。参考答案:117.给出下列命题:

①函数都是周期函数;②函数在区间上递增;③函数是奇函数;④函数,的图像与直线围成的图形面积等于;⑤函数是偶函数,且图像关于直线对称,则2为的一个周期.

其中正确的命题是__________.(把正确命题的序号都填上).

参考答案:①③④⑤略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,在中,,⑴求的值;⑵设BC的中点为D,求中线AD的长。参考答案:19.已知数列满足

,且是的等差中项.(1)求数列的通项公式;(2)若求的最大值.(12分)参考答案:略20.已知函数(1)判定的奇偶性;(2)判断并用定义证明在上的单调性。参考答案:21.如图,在四棱锥A﹣CDFE中,底面CDFE是直角梯形,CE∥DF,EF⊥EC,CE=DF,AF⊥平面CDFE,P为AD中点.(Ⅰ)证明:CP∥平面AEF;(Ⅱ)设EF=2,AF=3,FD=4,求点F到平面ACD的距离.参考答案:【考点】点、线、面间的距离计算;直线与平面平行的判定.【分析】(I)作AF中点G,连结PG、EG,证明CP∥EG.然后利用直线与平面平行的判定定理证明CP∥平面AEF.(II)作FD的中点Q,连结CQ、FC.求出CF,证明CD⊥AC,设点F到平面ACD的距离为h,利用VF﹣ACD=VD﹣ACF.求解即可.【解答】(本小题满分12分)证明:(I)作AF中点G,连结PG、EG,∴PG∥DF且.∵CE∥DF且,∴PG∥EC,PG=EC.∴四边形PCEG是平行四边形.…∴CP∥EG.∵CP?平面AEF,EG?平面AEF,∴CP∥平面AEF.…(II)作FD的中点Q,连结CQ、FC.∵FD=4,∴EC=FQ=2.又∵EC∥FQ,∴四边形ECQF是正方形.∴.∴Rt△CQD中,.∵DF=4,CF2+CD2=16.∴CD⊥CF.∵AF⊥平面CDEF,CD?平面CDEF,∴AF⊥CD,AF∩FC=F.∴CD⊥平面ACF.∴CD⊥AC.…设点F到平面ACD的距离为h,∴VF﹣ACD=VD﹣ACF.∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论