版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
会计学1等差数列第2课时(1)证明:因为等差数列{an}的公差是d(常数),所以所以{bn}是等差数列.第1页/共27页(2)若a1d≠0,问数列{an}中的任一项an是否一定在(1)中数列{bn}中?如果是,设此项为bm,探求此时n与m的关系式;如果不是,请说明理由.由(1)知,bn=b1+(n-1),且b1=a1,即bn=a1+(n-1),an=a1+d(n-1).假设存在符合题意的项,则由an=bm,第2页/共27页可得a1+d(n-1)=a1+(m-1),所以(m-1)=n-1,即m=2n-1.由m,n都是正整数可得此式成立.故数列{an}中的任一项an一定在数列{bn}中.
第3页/共27页【点评:】一个数列为等差数列的充要条件可以是:①an+1-an=d;②an=an+b;③Sn=an2+bn(Sn是前n项和);④an+2+an=2an+1.判断一项a是否为某数列{an}的项,就是方程an=a是否有对应的正整数解.第4页/共27页已知首项不为零的数列{an}的前n项和为Sn,若对任意的r、t∈N*,都有判断{an}是否为等差数列,并证明你的结论.{an}是等差数列,证明如下:因为a1=S1≠0,令t=1,r=n,由得即Sn=a1n2第5页/共27页所以,当n≥2时,an=Sn-Sn-1=a1(2n-1),且n=1时此式也成立.所以an+1-an=2a1(n∈N*),即{an}是以a1为首项,2a1为公差的等差数列.第6页/共27页
题型4:等差数列性质的应用2.在等差数列{an}中,a4+a6+a8+a10+a12=120,求2a9-a10的值.
分析:本题主要考查等差数列的通项公式及等差数列性质的运用.运用等差数列的通项公式把任意项转化到首项与公差上来是解决数列问题的通性通法.第7页/共27页1:因为2a9-a10=a9+(a9-a10)=a9-d=a8,而a4+a12=a6+a10=2a8,即5a8=120,故a8=24,所以2a9-a10=24.2:由a4+a6+a8+a10+a12=120,得5a1+(3+5+7+9+11)d=120,即a1+7d=a8=24,所以2a9-a10=a9-d=a8=24.第8页/共27页
点评:根据等差数列的项与项数的关系,灵活运用等差数列的性质解题,可以简化思维过程,优化解题步骤.第9页/共27页若{an}是等差数列,根据条件解下列各题.(1)已知a3+a4+a5+a6+a7=450,求a2+a8;(2)已知a5=11,a8=5,求an;(3)已知a2+a5+a8=9,a3a5a7=-21,求an.
第10页/共27页(1)解1:a3+a7=a4+a6=2a5=a2+a8,所以a3+a4+a5+a6+a7=5a5=450,所以a5=90,所以a2+a8=2a5=180.解2:因为{an}是等差数列,设首项为a1,公差为d,所以a3+a4+a5+a6+a7=a1+2d+a1+3d+a1+4d+a1+5d+a1+6d=5a1+20d,即5a1+20d=450,所以a1+4d=90,所以a2+a8=a1+d+a1+7d=2a+8d=180.第11页/共27页(2)因为a8=a5+3d,所以d==-2,an=a8+(n-8)d=5+(n-8)´(-2)=21-2n.(3)因为a2+a5+a8=9,a3a5a7=-21,又因为a2+a8=a3+a7=2a5,所以3a5=9,故a5=3.所以a3+a7=2a5=6
①,a3a7=-7
②,由①②解得a3=-1,a7=7或a3=7,a7=-1,所以a3=-1,d=2或a3=7,d=-2,由an=a3+(n-3)d,得an=2n-7或an=-2n+13.第12页/共27页
题型5:等差数列与函数交汇3.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2.数列{an}的前n项和为Sn,点(n,Sn)(n∈N)均在函数y=f(x)的图象上.(1)求数列{an}的通项公式;(2)设Tn是数列{bn}的前n项和,求使得对所有n∈N*都成立的最小正整数m.第13页/共27页(1)设二次函数f(x)=ax2+bx(a≠0),则f′(x)=2ax+b.由f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,第14页/共27页所以Sn=3n2-2n.当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;当n=1时,a1=S1=3×12-2=6×1-5.所以an=6n-5(n∈N*).第15页/共27页(2)由(1)知故第16页/共27页因此,要使都成立,必须且仅须满足即m≥10,所以满足要求的最小正整数m为10.第17页/共27页【点评:】数列是特殊的函数,有关数列中的一些问题,可以利用函数的方法来解决,如求数列中的最值项,先把定义域看为正整数集,然后利用求函数最值的方法进行求解.第18页/共27页已知等差数列{an}中,公差d>0,Sn为其前n项和,且满足a2·a3=45,a1+a4=14.(1)求数列{an}的通项公式;第19页/共27页
由于a1+a4=a2+a3=14,故a2,a3是方程x2-14x+45=0的两根,且a2<a3,所以a2=5,a3=9,故d=4,a1=1,所以an=4n-3(n∈N*).第20页/共27页(2)通过构成一个新的数列{bn},使{bn}也是等差数列,求非零常数c;由(1)可知,Sn=n(2n-1),因为{bn}也是等差数列,第21页/共27页所以2b2=b1+b3,所以化简得2c2+c=0,解得或c=0(舍去).所以第22页/共27页(3)求
的最大值.由(2)可知,所以当且仅当n=5时取等号.故当n=5时,f(n)的最大值为第23页/共27页设Sn和Tn分别为两个等差数列{an},{bn}的前n项和,若对任意n∈N,都有则数列{an}的第11项与数列{bn}的第11项的比是()A.4∶3B.3∶2C.7∶4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论