版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
r语言garchcopulavar模型附代码数据数据处理思路#1.原始数据为4组时间序列;#读取软件包library("fGarch")library("quantmod")library(ghyp)library(copula)#设置工作目录##读取数据data=read.csv("Data.csv")head(data)# Pound Jpan Usd Eur#1 -0.016689192 -0.006422036 -0.004161304 0.001084608#2 0.000000000 0.005993930 0.000000000 -0.034008741#3 0.000000000 -0.006850273 0.008322209 -0.013969242#4 0.012517495 0.010275005 0.000000000 -0.001120290#5 0.012513888 -0.007277877 0.020798548 -0.011676878#6 -0.008342191 0.002140679 0.012474350 0.007202157data=na.omit(data)2.对每组数据进行基本检验(自回归,异方差,自相关,稳定性,正态性)然后进行ARCH(1,1)建模,得到四个边缘分布;#自编函数进行基本检验testfun=function(yield){#绘制时序图ts.plot(yield)#基本统计量summary(yield)sd(yield)var(yield)# /*偏度、峰度*/n<-length(yield)m<-mean(yield)s<-sd(yield)g1<-n/((n-1)*(n-2))*sum((yield-m)八3)/s八3g2<-((n*(n+1))/((n-1)*(n-2)*(n-3))*sum((yield-m)八4)/s八4-(3*(n-1)八2)/
r语言garchcopulavar模型附代码数据((n-2)*(n-3)))#偏度g1#峰度g2# /*作图*/hist(yield,freq=F)lines(density(yield))#QQ图(正态性)qqnorm(yield)qqline(yield)library(tseries)# /*JB检验*/(检验正态性)print(jarque.bera.test(yield))# /*自相关性检验*/print(Box.test(yield,type="Ljung-Box"))然后用自相关图检查序列的平稳性,,最后发现一阶差分后的序列是平稳的#检验自相关偏相关系数acf(yield)pacf(yield)下面对平稳性序列建立模型,偏相关系数在滞后!期后很快地趋向于0,所以取p=1,自相关系数图形具有拖尾性,所以初步判断诲(1)模型# /*单位根检验*/稳定性检验print(adf.test(yield))print(pp.test(yield))# /*ARCH-LM检验结果*/异方差检验library(FinTS)print(ArchTest(yield,lags=12,demean=FALSE))# 建立/*GARCH*/模型library(fGarch);library(rugarch)#/*GARCH(1,1)-norm*/garch_norm<-garchFit(yield〜garch(1,1),trace=FALSE)garch_normspec<-ugarchspec(variance.model=list(garchOrder=c(1,1)),mean.model=list(armaOrder=c(0,0)))fit<-ugarchfit(spec=spec,data=yield)
r语言garchcopulavar模型附代码数据fit#对每一组数据进行分析yield=data[,1]testfun(yield)r语言garchcopulavar模型附代码数据TimeHistogramofyieldId
lle[r语言garchcopulavar模型附代码数据NormalQ-QPloto। । । । । ।r-3-2-10 1 2 3TheoreticalQuantiles##JarqueBeraTest##data:yield#X-squared=614.62,df=2,p-value<2.2e-16###Box-Ljungtest##data:yield#X-squared=0.51149,df=1,p-value=0.4745
r语言garchcopulavar模型附代码数据Seriesyield#Warninginadf.test(yield):p-valuesmallerthanprintedp-value##AugmentedDickey-FullerTest##data:yield#Dickey-Fuller=-13.844,Lagorder=13,p-value=0.01#alternativehypothesis:stationary#Warninginpp.test(yield):p-valuesmallerthanprintedp-value##Phillips-PerronUnitRootTest##data:yield#Dickey-FullerZ(alpha)=-2511.3,Truncationlagparameter=9,#p-value=0.01#alternativehypothesis:stationary###ARCHLM-test;Nullhypothesis:noARCHeffects##data:yield#Chi-squared=137.66,df=12,p-value<2.2e-16#Loadingrequiredpackage:parallel
r语言garchcopulavar模型附代码数据##Attachingpackage:'rugarch'#Thefollowingobjectismaskedfrom'package:stats':##sigmaSeriesyieldTOC\o"1-5"\h\zS/ । .o0 5 10 15 20 25 30 35Lag##* *#* GARCHModelFit *#* *##ConditionalVarianceDynamics# #GARCHModel:sGARCH(1,1)#MeanModel:ARFIMA(0,0,0)#Distribution:norm##OptimalParameters# ##EstimateStd.ErrortvaluePr(>|t|)##mu-0.0003060.000404-0.75660.44929##omega0.0000050.0000041.30700.19123##alpha10.0269570.0050415.34780.00000##beta10.9639890.002210436.18680.00000####RobustStandardErrors:r语言garchcopulavar模型附代码数据####mu##omega################alpha1beta1Estimate-0.0003060.0000050.0269570.963989Std.Error0.0004300.0000250.0312150.005525tvalue-0.711640.189450.86359174.47964Pr(>|t|)0.476690.849740.387820.00000LogLikelihood:####mu##omega################alpha1beta1Estimate-0.0003060.0000050.0269570.963989Std.Error0.0004300.0000250.0312150.005525tvalue-0.711640.189450.86359174.47964Pr(>|t|)0.476690.849740.387820.00000LogLikelihood:6477.686InformationCriteria##Akaike##Bayes##Shibata-4.8275-4.8187-4.8275##Hannan-Quinn-4.8243####WeightedLjung-BoxTestonStandardizedResiduals################statisticLag[1] 0.00832Lag[2*(p+q)+(p+q)-1][2] 1.48204Lag[4*(p+q)+(p+q)-1][5] 4.83395d.o.f=0H0:Noserialcorrelationp-value0.92730.36520.1668##WeightedLjung-BoxTestonStandardizedSquaredResiduals##############Lag[1]Lag[2*(p+q)+(p+q)-1][5]Lag[4*(p+q)+(p+q)-1][9]d.o.f=2statistic6.928.1111.59p-value0.0085220.0276720.022506##WeightedARCHLMTests## ####ARCH##ARCH##ARCHLag[3]Lag[5]Lag[7]Statistic0.29372.03345.6010Shape0.5001.4402.315Scale2.0001.6671.543## ####ARCH##ARCH##ARCHLag[3]Lag[5]Lag[7]Statistic0.29372.03345.6010Shape0.5001.4402.315Scale2.0001.6671.543P-Value0.58780.46390.1704##########NyblomstabilitytestJointStatistic:4.4761IndividualStatistics:##mu##omega##alpha1##beta1##0.320130.760210.091710.23634##AsymptoticCriticalValues(10%5%1%)r语言garchcopulavar模型附代码数据##JointStatistic: 1.071.241.6##IndividualStatistic: 0.350.470.75####SignBiasTest## ##t-valueprobsig##SignBias2.02860.04260**##NegativeSignBias2.53880.01118**##PositiveSignBias0.29350.76914##JointEffect6.99890.07193*######AdjustedPearsonGoodness-of-FitTest:## ##groupstatisticp-value(g-1)##120105.74.951e-14##230216.21.590e-30##340284.35.053e-39##450404.91.711e-57######Elapsedtime:0.784045yield=data[,2]testfun(yield)r语言garchcopulavar模型附代码数据HistogramofyieldId
lle[r语言garchcopulavar模型附代码数据NormalQ-QPlot-3 -2 -1 0 1 2 3TheoreticalQuantiles###JarqueBeraTest##data:yield#X-squared=622.46,df=2,p-value<2.2e-16###Box-Ljungtest##data:yield#X-squared=8.6698,df=1,p-value=0.003235
r语言garchcopulavar模型附代码数据Seriesyield#Warninginadf.test(yield):p-valuesmallerthanprintedp-value##AugmentedDickey-FullerTest##data:yield#Dickey-Fuller=-13.404,Lagorder=13,p-value=0.01#alternativehypothesis:stationary#Warninginpp.test(yield):p-valuesmallerthanprintedp-value
r语言garchcopulavar模型附代码数据##Phillips-PerronUnitRootTest##data:yield#Dickey-FullerZ(alpha)=-2799.7,Truncationlagparameter=9,#p-value=0.01#alternativehypothesis:stationary###ARCHLM-test;Nullhypothesis:noARCHeffects##data:yield#Chi-squared=200.84,df=12,p-value<2.2e-16#TOC\o"1-5"\h\z#* *#* GARCHModelFit *#* *##ConditionalVarianceDynamics# #GARCHModel:sGARCH(1,1)#MeanModel:ARFIMA(0,0,0)#Distribution:norm###OptimalParameters##
r语言garchcopulavar模型附代码数据## EstimateStd.ErrortvaluePr(>|t|)##mu -0.000378 0.000162-2.326060.020015##omega##alpha1##beta1##omega##alpha1##beta10.0000010.0734540.9184890.0541461.356590.174911##Robust####mu##omega##alpha1##beta1StandardErrors:EstimateStd.Error##Robust####mu##omega##alpha1##beta1StandardErrors:EstimateStd.Error-0.0003780.0000010.0734540.9184890.0045510.0002243.6091323.598937tvalue-0.0830400.0044030.0203520.255211Pr(>|t|)0.933820.996490.983760.79856####LogLikelihood:8875.036###InformationCriteria## ###Akaike -6.6152#Bayes -6.6064#Shibata -6.6152##Hannan-Quinn-6.6121####WeightedLjung-BoxTestonStandardizedResiduals## # statistic p-value#Lag[1] 1.670 0.1963#Lag[2*(p+q)+(p+q)-1][2] 2.129 0.2422#Lag[4*(p+q)+(p+q)-1][5] 3.179 0.3754#d.o.f=0#H0:Noserialcorrelation###WeightedLjung-BoxTestonStandardizedSquaredResiduals##############Lag[1]Lag[2*(p+q)+(p+q)-1][5]Lag[4*(p+q)+(p+q)-1][9]d.o.f=2statistic1.3651.7812.051p-value0.24270.67110.8988#####ARCHLag[3]#ARCHLag[5]#ARCHLag[7]###WeightedARCHLMTests## StatisticShapeScaleP-Value0.59470.5002.0000.44060.71501.4401.6670.81890.81942.3151.5430.9411##Nyblomstabilitytest## ##JointStatistic:83.8698r语言garchcopulavar模型附代码数据#IndividualStatistics:#mu0.1258#omega8.1451#alpha10.1628#beta10.2932##AsymptoticCriticalValues(10%5%1%)#JointStatistic: 1.071.241.6#IndividualStatistic: 0.350.470.75##SignBiasTest# # t-value prob sig#SignBias 0.8300 0.4066#NegativeSignBias0.00960.9923#PositiveSignBias0.85000.3954#JointEffect 3.9034 0.2721###AdjustedPearsonGoodness-of-FitTest:# ##groupstatisticp-value(g-1)##120134.12.473e-19##230178.12.286e-23##340156.35.577e-16##450207.42.232e-21###Elapsedtime:0.686039yield=data[,3]testfun(yield)r语言garchcopulavar模型附代码数据QOc5I0 500WOO150{) 2000 2500TimeHistogramofyieldId
lle[r语言garchcopulavar模型附代码数据NormalQ-QPlot-3-2-10 1 2 3TheoreticalQuantiles###JarqueBeraTest##data:yield#X-squared=1139.4,df=2,p-value<2.2e-16###Box-Ljungtest##data:yield#X-squared=1.7147,df=1,p-value=0.1904r语言garchcopulavar模型附代码数据Seriesyield0 5 10 152D25 30 35Lag#Warninginadf.test(yield):p-valuesmallerthanprintedp-value##AugmentedDickey-FullerTest##data:yield#Dickey-Fuller=-13.046,Lagorder=13,p-value=0.01#alternativehypothesis:stationary#Warninginpp.test(yield):p-valuesmallerthanprintedp-valuer语言garchcopulavar模型附代码数据0 5 10 15 20 25 30 35Lag##Phillips-PerronUnitRootTest##data:yield#Dickey-FullerZ(alpha)=-2592.1,Truncationlagparameter=9,#p-value=0.01#alternativehypothesis:stationary###ARCHLM-test;Nullhypothesis:noARCHeffects##data:yield#Chi-squared=186.82,df=12,p-value<2.2e-16#TOC\o"1-5"\h\z#* *#* GARCHModelFit *#* *##ConditionalVarianceDynamics# #GARCHModel:sGARCH(1,1)#MeanModel:ARFIMA(0,0,0)#Distribution:norm###OptimalParameters##
r语言garchcopulavar模型附代码数据## EstimateStd.ErrortvaluePr(>|t|)##mu -0.000280 0.000409-0.685010.493340##omega##alpha1##beta1##omega##alpha1##beta10.0000030.0407330.9537840.004312 9.44690 0.0000000.004676203.976870.000000##StandardErrors:EstimateStandardErrors:EstimatePr(>|t|)0.474770.351070.000000.00000##Robust####mu##omega##alpha1##beta1-0.0002800.0000030.0407330.953784Std.Error0.0003920.0000040.0049570.006562tvalue-0.714740.932518.21679145.34066####LogLikelihood:6305.272####InformationCriteria## ###Akaike -4.6989#Bayes -4.6901#Shibata -4.6989##Hannan-Quinn-4.6958####WeightedLjung-BoxTestonStandardizedResiduals## # statistic p-value#Lag[1] 1.487 0.2227#Lag[2*(p+q)+(p+q)-1][2] 2.793 0.1596#Lag[4*(p+q)+(p+q)-1][5] 4.167 0.2340#d.o.f=0#H0:NoserialcorrelationStandardizedSquaredResiduals#StandardizedSquaredResiduals##statisticp-value##Lag[1] 0.22180.6377##Lag[2*(p+q)+(p+q)-1][5] 0.62450.9369##Lag[4*(p+q)+(p+q)-1][9] 1.21580.9755##WeightedLjung-BoxTeston## ##d.o.f=2####WeightedARCHLMTests## # Statistic Shape Scale P-Value#ARCH Lag[3] 0.003795 0.500 2.000 0.9509#ARCH Lag[5] 0.558535 1.440 1.667 0.8662#ARCH Lag[7] 0.860015 2.315 1.543 0.9352##Nyblomstabilitytest# #JointStatistic:11.858r语言garchcopulavar模型附代码数据#IndividualStatistics:#mu0.04612#omega1.68786#alpha10.21234#beta10.13921##AsymptoticCriticalValues(10%5%1%)#JointStatistic: 1.071.241.6#IndividualStatistic: 0.350.470.75##SignBiasTest# # t-value prob sig#SignBias 0.50882 0.6109#NegativeSignBias0.029040.9768#PositiveSignBias0.956150.3391#JointEffect3.239740.3561###AdjustedPearsonGoodness-of-FitTest:# ##groupstatisticp-value(g-1)##120224.44.516e-37##230414.97.179e-70##340530.31.819e-87##450669.57.785e-110###Elapsedtime:0.5700321yield=data[,4]testfun(yield)r语言garchcopulavar模型附代码数据TimeHistogramofyieldr语言garchcopulavar模型附代码数据NormalQ-QPlot-3 -2 -1 0 1 2 3TheoreticalQuantiles###JarqueBeraTest##data:yield#X-squared=265.7,df=2,p-value<2.2e-16###Box-Ljungtest##data:yield#X-squared=12.253,df=1,p-value=0.0004644r语言garchcopulavar模型附代码数据SeriesyieldCDOCD5 10 15 20 25 30 35Lag#Warninginadf.test(yield):p-valuesmallerthanprintedp-value##AugmentedDickey-FullerTest##data:yield#Dickey-Fuller=-13.616,Lagorder=13,p-value=0.01#alternativehypothesis:stationary#Warninginpp.test(yield):p-valuesmallerthanprintedp-value
r语言garchcopulavar模型附代码数据##Phillips-PerronUnitRootTest##data:yield#Dickey-FullerZ(alpha)=-2410.8,Truncationlagparameter=9,#p-value=0.01#alternativehypothesis:stationary###ARCHLM-test;Nullhypothesis:noARCHeffects##data:yield#Chi-squared=146.83,df=12,p-value<2.2e-16#TOC\o"1-5"\h\z#* *#* GARCHModelFit *#* *##ConditionalVarianceDynamics# #GARCHModel:sGARCH(1,1)#MeanModel:ARFIMA(0,0,0)#Distribution:norm##OptimalParameters# r语言garchcopulavar模型附代码数据# EstimateStd.Error#mu -0.000575 0.000300#omega 0.000005 0.000002#alphal 0.047347 0.004708#beta1 0.934878 0.006087##RobustStandardErrors:# EstimateStd.Error#mu -0.000575 0.000334#omega 0.000005 0.000006#alpha1 0.047347 0.012544#beta1 0.934878 0.010121##LogLikelihood:7255.899#tvaluePr(>|t|)-1.91510.0554812.43740.01479510.05710.000000153.58900.000000tvaluePr(>|t|)-1.721940.0850810.897570.3694173.774410.00016092.368670.000000##InformationCriteria## ###Akaike -5.4078#Bayes -5.3990#Shibata -5.4078#Hannan-Quinn-5.4046##WeightedLjung-BoxTestonStandardizedResiduals# # statistic p-value#Lag[1] 10.02 0.001547#Lag[2*(p+q)+(p+q)-1][2] 10.18 0.001714#Lag[4*(p+q)+(p+q)-1][5] 11.34 0.004141#d.o.f=0#H0:Noserialcorrelation##WeightedLjung-BoxTestonStandardizedSquaredResiduals## ####Lag[1]##Lag[2*(p+q)+(p+q)-1][5]##Lag[4*(p+q)+(p+q)-1][9]##d.o.f=2statisticp-value3.9520.046835.9390.092976.8330.21355####WeightedARCHLMTests##################StatisticShapeScaleP-ValueARCHLag[3]2.3210.5002.0000.1276ARCHLag[5]3.0691.4401.6670.2799ARCHLag[7]3.2102.3151.5430.4749NyblomstabilitytestJointStatistic:1.5527r语言garchcopulavar模型附代码数据#IndividualStatistics:#mu1.0709#omega0.1964#alpha10.1429#beta10.1513##AsymptoticCriticalValues(10%5%1%)#JointStatistic: 1.071.241.6#IndividualStatistic: 0.350.470.75##SignBiasTest# # t-value prob sig#SignBias 1.2545 0.2098#NegativeSignBias0.96500.3346#PositiveSignBias0.69060.4899#JointEffect 4.1751 0.2432###AdjustedPearsonGoodness-of-FitTest:# ##groupstatisticp-value(g-1)##12030.350.04752##23033.060.27549##34042.380.32717##45053.610.30205###Elapsedtime:0.7420433.利用得到的四组边缘分布,测度两两之间的相关性后,选择合适检uLa函数,建立四元CopuLa函数,并检验拟合程度;y2<-datahead(y2)# Pound Jpan Usd Eur#1 -0.016689192 -0.006422036 -0.004161304 0.001084608#2 0.000000000 0.005993930 0.000000000 -0.034008741#3 0.000000000 -0.006850273 0.008322209 -0.013969242#4 0.012517495 0.010275005 0.000000000 -0.001120290#5 0.012513888 -0.007277877 0.020798548 -0.011676878#6 -0.008342191 0.002140679 0.012474350 0.0072021572DdistributionofyieLds:cdf<-pobs(y2)
r语言garchcopulavar模型附代码数据测度两两之间的相关性plot(cdf)O建立四元Copula函数t.cop<-tCopula(dim=4,param=0.5,df=2,df.fixed=TRUE)fit<-fitCopula(data=cdf,copula=t.cop)检验拟合程度summary(fit)#$method#[1]"maximumpseudo-likelihood"##$loglik#[1]-839.8142##$convergence#[1]0##$coefficients#
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 底商租赁合同中的押金退还
- 意大利足协球员与代理商的委托合同案例
- 广告牌施工合同书模板
- 废旧设备处理合同参考
- 跨国科技咨询与设计合同
- 第17课 猫 第1课时 公开课一等奖创新教学设计-【课堂无忧】新课标同步核心素养课堂
- 《手术台就是阵地》公开课一等奖创新教学设计(共两课时)
- 智慧医疗大数据
- 改善提案培训课程
- 肉鸡场养殖规划预算
- 浅议中国特色社会主义经济建设
- 贫血的中医治疗:中药在贫血治疗中的应用
- 狮子王-中英文-剧本台词(全)
- 印刷品价目表
- 世界旅游业智慧树知到课后章节答案2023年下临沂大学
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 电力变压器试验报告模板
- 配电网技术标准(施工验收分册)
- 高一信息技术组期中考试成绩分析报告
- 第五单元 国乐飘香-《老鼠娶亲》作业设计 2023-2024学年人音版初中音乐八年级上册
- 【高中语文】《论语十二章》课件30张+统编版+选择性必修上册
评论
0/150
提交评论