两个基本计数原理苏教版选修2-3第一课时_第1页
两个基本计数原理苏教版选修2-3第一课时_第2页
两个基本计数原理苏教版选修2-3第一课时_第3页
两个基本计数原理苏教版选修2-3第一课时_第4页
两个基本计数原理苏教版选修2-3第一课时_第5页
免费预览已结束,剩余27页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章1.1第一课时基本计数原理把握热点考向应用创新演练考点一考点二考点三理解教材新知知识点一知识点二第一课时基本计数原理2012年7月,第30届夏季奥林匹克运动会在伦敦召开,这是国际体坛的一大盛事.一名志愿者从曼彻斯特赶赴伦敦为游客提供导游服务,每天有7个航班,6列火车.问题1:该志愿者从曼彻斯特到伦敦的方案可分几类?提示:两类,即乘飞机、坐火车.

问题2:这几类方案中各有几种方法?提示:第一类方案(乘飞机)有7种方法,第二类方案(坐火车)有6种方法.问题3:该志愿者从曼彻斯特到伦敦共有多少种不同的方法?提示:共有7+6=13种不同的方法.

做一件事,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法.那么完成这件事共有N=

种不同的方法.m1+m2+…+mn2012年7月,第30届夏季奥林匹克运动会在伦敦召开,这是国际体坛的一大盛事.一名志愿者从曼彻斯特赶赴伦敦为游客提供导游服务,但需在伯明翰停留,已知从曼彻斯特到伯明翰每天有7个航班,从伯明翰到伦敦每天有6列火车.

问题1:该志愿者从曼彻斯特到伦敦需要经历几个步骤?提示:两个,即先乘飞机到伯明翰,再坐火车到伦敦.问题2:完成每一步各有几种方法?提示:第一个步骤有7种方法,第二个有6种方法.问题3:该志愿者从曼彻斯特到伦敦共有多少种不同的方法?提示:共有7×6=42种不同方法.

做一件事,完成它需要分成n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有mn种不同的方法.那么完成这件事共有N=

种不同的方法.m1×m2×…×mn两个计数原理的区别:分类加法计数原理分步乘法计数原理区别一每类方案中的每种方法都能独立完成这件事每一步完成的只是其中的一个环节,只有各步骤都完成了才能完成这件事区别二各类办法之间是互斥的、并列的、独立的各步之间是相互依存的,并且既不能重复,也不能遗漏[例1]若x,y∈N+,且x+y≤6,试求有序自然数对(x,y)的个数.

[思路点拨]解答本题可按x(或y)的取值分类解决.[精解详析]按x的取值进行分类:

x=1时,y=1,2,3,4,5,共构成5个有序自然数对;

x=2时,y=1,2,3,4,共构成4个有序自然数对;

x=3时,y=1,2,3,共构成3个有序自然数对;

x=4时,y=1,2,共构成2个有序自然数对;

x=5时,y=1,共构成1个有序自然数对.根据分类加法计数原理,共有N=5+4+3+2+1=15个有序自然数对.[一点通]利用分类加法计数原理时要注意:(1)要准确理解题意,确定分类的标准.(2)分类时要做到“不重不漏”,即类与类之间要保证相互间的独立性.1.某学生在书店发现3本好书,决定至少买其中的1本,则购买方法有_____解析:分三类:买1本书、买2本书、买3本书,各类的方法依次为3种、3种、1种,故共有购买方法3+3+1=7种.答案:72.一项工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成.从中选出1人来完成这项工作,不同选法的种数是______解析:第一类:会第1种方法的选1人,有3种选法;第二类:会第2种方法的选1人,有5种选法,共有5+3=8种选法.答案:83.在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解:法一:按十位上的数字分别是1,2,3,4,5,6,7,8的情况分成八类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36个.法二:按个位上的数字是2,3,4,5,6,7,8,9分成八类,在每一类中满足条件的两位数分别有1个,2个,3个,4个,5个,6个,7个,8个.所以按分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36个.

[例2]张涛大学毕业参加工作后,把每月工资中结余的钱分为两部分,其中一部分用来定期储蓄,另一部分用来购买国债.人民币储蓄可以从一年期、二年期两种中选择一种,购买国债则可以从一年期、二年期和三年期中选择一种.问:张涛共有多少种不同的理财方式?

[思路点拨]张涛要完成人民币定期储蓄和购买国债这两项投资,他的理财目标才算完成,所以用分步乘法计数原理解决.[精解详析]由题意知,张涛要完成理财目标应分步完成.第一步,将一部分钱用来定期储蓄,从一年期和二年期中任意选择一种理财方式;第二步,用另一部分钱购买国债,从一年期、二年期和三年期三种国债中任意选择一种理财方式.由分步乘法计数原理,知张涛共有2×3=6种不同的理财方式.[一点通]

利用分步乘法计数原理时要注意:(1)仔细审题,抓住关键点确立分步标准,有特殊要求的先行安排;(2)分步要保证各步之间的连续性和相对独立性.4.现有4件不同款式的上衣和3条不同颜色的长裤,如果选一条长裤与一件上衣配成一套,则不同的配法种数为______解析:要完成配套需分两步,第一步,选上衣,从4件上衣中任选一件,有4种不同选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.答案:125.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有_____解析:第一步取数b,有6种方法;第二步取数a,也有6种方法.根据分步乘法计数原理,共有6×6=36种方法.答案:36[例3]

(10分)有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有多少种?[思路点拨]从这4个操作人员中选3人分别去操作这三种型号的电脑,首先将问题分类,可分为四类,然后每一类再分步完成.即解答本题可“先分类,后分步”.[一点通]在处理比较复杂的有关两个原理的综合题目时,要挖掘条件,先分类,后分步.分类要全,分步要精,确保解题的条理性,化繁为简是此类问题的解题精要所在.6.李芳有4件不同颜色的衬衣、3件不同花样的裙子,另有2套不同样式的连衣裙.“五一”劳动节需选择一套服装参加歌舞演出,则李芳不同的选择穿衣服的方式有_____解析:不选连衣裙有4×3=12种方法,选连衣裙有2种.共有12+2=14种.答案:147.从1,2,3,5,7,9六个数中任取两个数作对数的底数和真数,则所有不同的对数值的个数为________.解析:分两类:第一类取1,1只能为真数,此时对数的值为0;第二类,不取1,分两步.第一步,取底数,有5种方法;第二步,取真数,有4种方法.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论