人教版数学九年级上册第二十四章达标测试卷1_第1页
人教版数学九年级上册第二十四章达标测试卷1_第2页
人教版数学九年级上册第二十四章达标测试卷1_第3页
人教版数学九年级上册第二十四章达标测试卷1_第4页
人教版数学九年级上册第二十四章达标测试卷1_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十四章达标测试卷一、选择题(每题3分,共30分)1.下列说法中不正确的是()A.圆是轴对称图形B.三点确定一个圆C.半径相等的两个圆是等圆D.每个圆都有无数条对称轴2.若⊙O的面积为25π,在同一平面内有一个点P,且点P到圆心O的距离为4.9,则点P与⊙O的位置关系为()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是()A.70°B.60°C.50°D.30°4.如图,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5B.7C.9D.115.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<86.如图,四边形ABCD内接于⊙O,F是eq\o(CD,\s\up8(︵))上一点,且eq\o(DF,\s\up8(︵))=eq\o(BC,\s\up8(︵)),连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°7.如图,⊙O与矩形ABCD的边相切于点E,F,G,点P是eq\o(EFG,\s\up8(︵))上一点,则∠P的度数是()A.45°B.60°C.30°D.无法确定8.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.eq\f(π,3)B.eq\f(\r(3)π,3)C.eq\f(2π,3)D.π9.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°10.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切……按这样的规律进行下去,正六边形A10B10C10D10E10F10的边长为()A.eq\f(243,29)B.eq\f(81\r(3),29)C.eq\f(81,29)D.eq\f(81\r(3),28)二、填空题(每题3分,共30分)11.如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为435,则∠D的度数是________.12.如图,PA,PB是⊙O的切线,切点分别为A,B,若OA=2,∠P=60°,则eq\o(AB,\s\up8(︵))的长为________.13.如图,⊙O中,eq\o(AB,\s\up8(︵))=eq\o(AC,\s\up8(︵)),∠BAC=50°,则∠AEC的度数为________.14.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是________.15.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过________mm.16.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=________°.17.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为________.18.如图,AC⊥BC,AC=BC=4,以BC长为直径作半圆,圆心为点O.以点C为圆心,BC长为半径作弧AB,过点O作AC的平行线交两弧于点D,E,则阴影部分的面积是________.19.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径是7,则GE+FH的最大值是________.20.如图,在⊙O中,C,D分别是OA,OB的中点,MC⊥AB,ND⊥AB,M,N在⊙O上.下列结论:①MC=ND;②eq\o(AM,\s\up8(︵))=eq\o(MN,\s\up8(︵))=eq\o(NB,\s\up8(︵));③四边形MCDN是正方形;④MN=eq\f(1,2)AB,其中正确的是________.(填序号)三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.如图,AB是圆O的直径,CD为弦,AB⊥CD,垂足为H,连接BC,BD.(1)求证:BC=BD;(2)已知CD=6,OH=2,求圆O的半径长.22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=2eq\r(5),OA=5,求⊙O的半径.24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=4eq\r(3),OA=4,求阴影部分的面积.25.如图,一座拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径;(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数;(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.

答案一、1.B2.C3.B4.A5.B6.B7.A点拨:连接OE,OG,易得OE⊥AB,OG⊥AD.∵四边形ABCD是矩形,∴∠A=90°,∴∠EOG=90°,∴∠P=eq\f(1,2)∠EOG=45°.8.B点拨:∵∠ACB=90°,∠ABC=30°,AB=2,∴AC=eq\f(1,2)AB=1.∴BC=eq\r(AB2-AC2)=eq\r(22-12)=eq\r(3).∴点B转过的路径长为eq\f(60π·\r(3),180)=eq\f(\r(3)π,3).9.C10.D点拨:∵正六边形A1B1C1D1E1F1的边长为2=eq\f((\r(3))1-1,21-2),∴正六边形A2B2C2D2E2F2的外接圆的半径为eq\r(3),则正六边形A2B2C2D2E2F2的边长为eq\r(3)=eq\f((\r(3))2-1,22-2),同理,正六边形A3B3C3D3E3F3的边长为eq\f(3,2)=eq\f((\r(3))3-1,23-2),……,正六边形AnBnCnDnEnFn的边长为eq\f((\r(3))n-1,2n-2),则当n=10时,正六边形A10B10C10D10E10F10的边长为eq\f((\r(3))10-1,210-2)=eq\f((\r(3))8·\r(3),28)=eq\f(34·\r(3),28)=eq\f(81\r(3),28),故选D.二、11.120°12.eq\f(4,3)π13.65°14.35°15.1216.215点拨:∵A,B,C,D四点共圆,∴∠B+∠ADC=180°.又∵A,C,D,E四点共圆,∴∠E+∠ACD=180°.∴∠ACD+∠ADC+∠B+∠E=360°.∵∠ACD+∠ADC=180°-35°=145°,∴∠B+∠E=360°-145°=215°.17.15π18.eq\f(5,3)π-2eq\r(3)19.10.520.①②④点拨:连接OM,ON,易证Rt△OMC≌Rt△OND.可得MC=ND,故①正确.在Rt△MOC中,CO=eq\f(1,2)MO,得∠CMO=30°,所以∠MOC=60°.易得∠MOC=∠NOD=∠MON=60°,所以eq\o(AM,\s\up8(︵))=eq\o(MN,\s\up8(︵))=eq\o(NB,\s\up8(︵)).故②正确.易得CD=eq\f(1,2)AB=OA=OM,因为MC<OM,所以MC<CD.所以四边形MCDN不是正方形.故③错误.易得MN=CD=eq\f(1,2)AB,故④正确.三、21.(1)证明:∵AB是圆O的直径,CD为弦,AB⊥CD,∴eq\o(BC,\s\up8(︵))=eq\o(BD,\s\up8(︵)),∴BC=BD.(2)解:如图,连接OC.∵AB是圆O的直径,CD为弦,AB⊥CD,CD=6,∴CH=3,∴OC=eq\r(OH2+CH2)=eq\r(22+32)=eq\r(13),即圆O的半径长为eq\r(13).22.解:设经过A,B两点的直线对应的函数解析式为y=kx+b.∵A(2,3),B(-3,-7),∴经过A,B两点的直线对应的函数解析式为y=2x-1.当x=5时,y=2×5-1=9≠11,∴点C(5,11)不在直线AB上,即A,B,C三点不在同一条直线上.∴平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)可以确定一个圆.23.(1)证明:如图,连接OB.∵OA⊥l,∴∠PAC=90°,∴∠APC+∠ACP=90°.∵AB=AC,OB=OP,∴∠ABC=∠ACB,∠OBP=∠OPB.∵∠BPO=∠APC,∴∠ABC+∠OBP=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线.(2)解:设⊙O的半径为r,则AP=5-r,OB=r.在Rt△OBA中,AB2=OA2-OB2=52-r2,在Rt△APC中,AC2=PC2-AP2=(2eq\r(5))2-(5-r)2.∵AB=AC,∴52-r2=(2eq\r(5))2-(5-r)2,解得r=3,即⊙O的半径为3.24.(1)证明:连接OC.∵AB与⊙O相切于点C,∴OC⊥AB.∵CD=CE,∴∠AOC=∠BOC.在△AOC和△BOC中,∴△AOC≌△BOC,∴OA=OB.(2)解:∵△AOC≌△BOC,∴AC=BC=eq\f(1,2)AB=2eq\r(3).∵OB=OA=4,且△OCB是直角三角形,∴根据勾股定理,得OC=eq\r(OB2-BC2)=2,∴OC=eq\f(1,2)OB,∴∠B=30°,∴∠BOC=60°.∴S阴影=S△BOC-S扇形OCE=eq\f(1,2)×2×2eq\r(3)-eq\f(60π×22,360)=2eq\r(3)-eq\f(2,3)π.25.解:(1)如图,设点E是桥拱所在圆的圆心.过点E作EF⊥AB于点F,延长EF交⊙E于点C,连接AE,则CF=20米.由垂径定理知,F是AB的中点,∴AF=FB=eq\f(1,2)AB=40米.设圆E的半径是r米,由勾股定理,得AE2=AF2+EF2=AF2+(CE-CF)2,即r2=402+(r-20)2.解得r=50.∴桥拱的半径为50米.(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=eq\r(EM2-DM2)=eq\r(502-302)=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论