上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析_第1页
上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析_第2页
上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析_第3页
上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析_第4页
上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海民办社科星光高级中学2022年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知A,B分别为椭圆+=1(a>b>0)的右顶点和上顶点,直线y=kx(k>0)与椭圆交于C,D两点,若四边形ABCD的面积最大值为2c2,则椭圆的离心率为()A. B. C. D.参考答案:D【考点】K4:椭圆的简单性质.【分析】联立直线方程和椭圆方程,求出C,D的坐标,得到|CD|,再由点到直线的距离公式求出A,B到直线的距离,把四边形的面积转化为两个三角形的面积和,由基本不等式求得最大值,结合最大值为2c2求得椭圆的离心率.【解答】解:如图,联立,得C(),D(),∴|CD|==.A(a,0)到直线kx﹣y=0的距离为=,B(0,b)到直线kx﹣y=0的距离为,∴四边形ABCD的面积S===.当且仅当ak=b,即k=时上式等号成立,∴,即2a2b2=4c4,∴a2b2=2c4,则a2(a2﹣c2)=2c4,解得:.故选:D.2.若函数的导函数的图像如图所示,则下列说法正确的是(

)A.是的一个极值点

B.和都是的极值点

C.和都是的极值点

D.,,都不是的极值点参考答案:A3.已知函数f(x)的定义域为(0,+∞),且满足(是f(x)的导函数),则不等式的解集为()A.(-1,2) B.(1,2) C.(1,+∞) D.(-∞,2)参考答案:C【分析】根据可知在上单调递减;利用定义可求得;将不等式变为,根据单调性可得不等式,从而求得结果.【详解】由得:令,则在上单调递减由定义域为可得:,解得:

即:

,解得:综上所述:本题正确选项:【点睛】本题考查利用函数的单调性求解不等式的问题,涉及到利用导数研究函数的单调性、抽象函数定义域的求解.关键是能够通过构造函数的方式将不等式转变为两个函数值之间的比较,再利用单调性转变为自变量的不等关系.4.记确定的区域为,确定的区域为,在区域中每次任取个点,连续取次得到个点,则这个点中恰好只有个点在区域中的概率为

)A.

B.

C.

D.参考答案:A5.焦点在x轴上的椭圆方程为+=1(a>b>0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则椭圆的离心率为()A. B. C. D.参考答案:C【考点】椭圆的简单性质.【分析】根据椭圆的性质AB=2c,AC=AB=a,OC=b,根据三角形面积相等求得a和c的关系,由e=,即可求得椭圆的离心率.【解答】解:由椭圆的性质可知:AB=2c,AC=AB=a,OC=b,SABC=AB?OC=?2c?b=bc,SABC=(a+a+2c)?r=?(2a+2c)×=,∴=bc,a=2c,由e==,故答案选:C.【点评】本题主要考察椭圆的基本性质,考察三角形的面积公式,离心率公式,属于基础题.6.类比“等差数列的定义”给出一个新数列“等和数列的定义”是(

)A.连续两项的和相等的数列叫等和数列B.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列C.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列D.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列参考答案:D7.双曲线方程为,则它的右焦点坐标为

)参考答案:C8.某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()A.80 B.40 C.60 D.20参考答案:B【考点】分层抽样方法.【专题】概率与统计.【分析】要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,根据一、二、三、四年级的学生比为4:3:2:1,利用三年级的所占的比例数除以所有比例数的和再乘以样本容量即得抽取三年级的学生人数.【解答】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,一、二、三、四年级的学生比为4:3:2:1,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.9.已知,,且,,则(

)A. B. C. D.参考答案:C10.从字母a,b,c,d,e,f中选出4个字母排成一列,其中一定要选出a和b,并且必须相邻(a在b的前面),共有排列方法()种.A.36 B.72 C.90 D.144参考答案:A【考点】D9:排列、组合及简单计数问题.【分析】再从剩余的4个字母中选取2个,方法有种,再将这2个字母和整体ab进行排列,方法有=6种,根据分步计数原理求得结果.【解答】解:由于ab已经选出,故再从剩余的4个字母中选取2个,方法有=6种,再将这2个字母和整体ab进行排列,方法有=6种,根据分步计数原理求得所有的排列方法共有6×6=36种,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.观察下列不等式1+<,1++<,1+++<,…照此规律,第五个不等式为

.参考答案:1+++++<

【考点】归纳推理.【分析】由已知中不等式1+<,1++<,1+++<,…,分析不等式两边的变化规律,可得答案.【解答】解:由已知中:不等式:1+<,1++<,1+++<,…归纳可得:第n个不等式为:1+++…+<,当n=5时,第五个不等式为1+++++<,故答案为:1+++++<12.已知集合,集合,则A∩B=▲

.参考答案:由题意结合交集的定义可得:.

13.某单位共有职工120人,其中男职工有48人,现利用分层抽样的方法抽取一个15人的样本,则男职工应抽取的人数为

.参考答案:614.已知集合,则集合的真子集共有

个.参考答案:7试题分析:集合含有3个元素,则子集个数为,真子集有7个考点:集合的子集15.关于图中的正方体,下列说法正确的有:____________.①点在线段上运动,棱锥体积不变;②点在线段上运动,直线AP与平面平行;③一个平面截此正方体,如果截面是三角形,则必为锐角三角形;④一个平面截此正方体,如果截面是四边形,则必为平行四边形;⑤平面截正方体得到一个六边形(如图所示),则截面在平面

与平面间平行移动时此六边形周长先增大,后减小。参考答案:①②③16.已知抛物线的焦点为F,准线与x轴的交点为K,点P在抛物线上,且,则△PKF的面积为________.

参考答案:817.已知关于x的不等式>0在[1,2]上恒成立,则实数m的取值范围为___________参考答案:【分析】对m进行分类讨论,、时分别分析函数的单调性,对m的取值范围进行进一步分类讨论,求出该函数在区间上的最小值,令最小值大于0,即可求得m范围.【详解】①当时,函数外层单调递减,内层二次函数:当,即时,二次函数在区间内单调递增,函数单调递减,,解得:;当,即时,无意义;当,,即时,二次函数在区间内先递减后递增,函数先递增后递减,则需,无解;当,即时,二次函数在区间内单调递减,函数单调递增,,无解.②当时,函数外层单调递增,,二次函数单调递增,函数单调递增,所以,解得:.综上所述:或.【点睛】本题考查不等式的恒成立问题,若大于0恒成立,则最小值大于0,若小于0恒成立则最大值小于0,注意对参数进行分类讨论,区分存在性问题与恒成立问题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知关于x的一元二次方程x2﹣2(a﹣2)﹣b2+16=0.(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率.参考答案:【考点】几何概型;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)本题是一个古典概型,用(a,b)表示一枚骰子投掷两次所得到的点数的事件,基本事件(a,b)的总数有36个,满足条件的事件是二次方程x2﹣2(a﹣2)x﹣b2+16=0有两正根,根据实根分布得到关系式,即可得到概率.(2)本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a﹣2)2+b2<16},求出两者的面积,即可得到概率.【解答】解:设“方程有两个正根”的事件为A,(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件依题意知,基本事件(a,b)的总数有36个,二次方程x2﹣2(a﹣2)x﹣b2+16=0有两正根,等价于,即,则事件A包含的基本事件为(6,1)、(6,2)、(6,3)、(5,3)共4个∴所求的概率为P(A)=;(2)由题意知本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤4,0≤b≤6},其面积为S(Ω)=12满足条件的事件为:B={(a,b)|2≤a≤4,0≤b≤6,(a﹣2)2+b2<16},如图中阴影部分所示,其面积为S(B)=+=∴所求的概率P(B)=.【点评】本题考查古典概型和几何概型,几何概型和古典概型是高中必修中学习的,高考时常以选择和填空出现,有时文科会考这种类型的解答题目.19.如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.(1)若DE∥平面A1MC1,求;(2)求直线BC和平面A1MC1所成角的余弦值.参考答案:【考点】直线与平面所成的角;直线与平面平行的性质.【专题】空间角.【分析】(1)取BC中点N,连结MN,C1N,由已知得A1,M,N,C1四点共面,由已知条件推导出DE∥C1N,从而求出.(2)连结B1M,由已知条件得四边形ABB1A1为矩形,B1C1与平面A1MC1所成的角为∠B1C1M,由此能求出直线BC和平面A1MC1所成的角的余弦值.【解答】解:(1)取BC中点N,连结MN,C1N,…∵M,N分别为AB,CB中点∴MN∥AC∥A1C1,∴A1,M,N,C1四点共面,…且平面BCC1B1∩平面A1MNC1=C1N,又DE∩平面BCC1B1,且DE∥平面A1MC1,∴DE∥C1N,∵D为CC1的中点,∴E是CN的中点,…∴.…(2)连结B1M,…因为三棱柱ABC﹣A1B1C1为直三棱柱,∴AA1⊥平面ABC,∴AA1⊥AB,即四边形ABB1A1为矩形,且AB=2AA1,∵M是AB的中点,∴B1M⊥A1M,又A1C1⊥平面ABB1A1,∴A1C1⊥B1M,从而B1M⊥平面A1MC1,…∴MC1是B1C1在平面A1MC1内的射影,∴B1C1与平面A1MC1所成的角为∠B1C1M,又B1C1∥BC,∴直线BC和平面A1MC1所成的角即B1C1与平面A1MC1所成的角…设AB=2AA1=2,且三角形A1MC1是等腰三角形∴,则MC1=2,,∴cos=,∴直线BC和平面A1MC1所成的角的余弦值为.…【点评】本题考查两条线段的比值的求法,考查角的余弦值的求法,解题时要认真审题,注意空间思维能力的培养.20.(本小题满分12分)如图,已知正四棱柱的底面边长为3,侧棱长为4,连结,过作垂足为,且的延长线交于。(1)求证:平面;(2)求二面角的平面角的正切值。

参考答案:解法二:根据题意,建立空间直角坐标系如图2所示,则,,,,。(1),,又,平面。(2)由(1)知,平面,是平面的一个法向量。又是平面的一个法向量。,即即二面角的平面角的正切值为。略21.已知等差数列{an}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{bn}的前n项的和为Sn,且.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)记cn=an?bn,求数列{cn}的前n项和Tn.参考答案:【考点】数列的求和;等差数列的通项公式;等比数列的通项公式.【分析】(Ⅰ)由已知可得,且a5>a3,联立方程解得a5,a3,进一步求出数列{an}通项,数列{bn}中,利用递推公式(Ⅱ)用错位相减求数列{cn}的前n和【解答】解:(Ⅰ)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{an}的公差d>0,∴a3=5,a5=9,公差.∴an=a5+(n﹣5)d=2n﹣1.(3分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论