版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市北蔡中学2022年高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列各组函数表示相等函数的是(
)A.y=与y=x+2 B.y=与y=x﹣3C.y=2x﹣1(x≥0)与s=2t﹣1(t≥0) D.y=x0与y=1参考答案:C【考点】判断两个函数是否为同一函数.【专题】函数思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.【解答】解:对于A,函数y==x+2(x≠2),与y=x+2(x∈R)的定义域不同,所以不是同一函数;对于B,函数y=(x≤﹣3x≥3),与y=x﹣3(x∈R)的定义域不同,对应关系也不同,所以不是同一函数;对于C,函数y=2x﹣1(x∈R),与y=2t﹣1(t∈R)的定义域相同,对应关系也相同,所以是同一函数;对于D,函数y=x0=1(x≠0),与y=1(x∈R)的定义域不同,所以不是同一函数.故选:C.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.2.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c参考答案:A【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.3.已知函数,若不等式在[3,4]上有解,则实数a的取值范围是(▲)A.
B.
C.
D.参考答案:B由函数,可得,所以函数为偶函数,图象关于轴对称,又当时,为单调递增函数,所以当时,函数为单调递减函数.因为在上有解,即有解,又,即在上有解,(1)当,即,即时,在上有解,即在上有解,所以,所以;(2)当,即,即时,在上有解,即在上有解,所以,所以,综上所述,实数的取值范围是,故选B.
4.已知函数f(x)=lnx+2x﹣6有唯一的零点在区间(2,3)内,且在零点附近的函数值用二分法逐次计算,得到数据如表所示.那么当精确度为0.02时,方程lnx+2x﹣6=0的一个近似根为()x2.52.531252.5468752.56252.6252.75f(x)0.0840.0090.0290.0660.2150.512A.2.5 B.2.53 C.2.54 D.2.5625参考答案:C【考点】二分法求方程的近似解.【分析】按照二分法的方法流程进行计算,根据f(a)?f(b)的符号确定根所在的区间,当区间长度小于或等于0.02时,只需从该区间上任取一个数即可.【解答】解:由表格可知,方程f(x)=lnx+2x﹣6的近似根在(2.5,3),(2.5,2.75),(2.5,2.625),(2.5,2.546875),(2.53125,2.546875),故程f(x)=lnx+2x﹣6的一个近似根(精确度0.02)为:2.54,故选C.5.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10?1,行政人员有24人,现采取分层抽样容量为50的样本,那么行政人员应抽取的人数为(
)A.3
B.4
C.6
D.8参考答案:C6.已知函数f(x)=,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2)+的取值范围为()A.(﹣1,+∞) B.(﹣1,1) C.(﹣∞,1) D.[﹣1,1]参考答案:B【考点】根的存在性及根的个数判断;函数的图象.【分析】作出函数f(x),得到x1,x2关于x=﹣1对称,x3x4=1;化简条件,利用数形结合进行求解即可.【解答】解:作函数f(x)的图象如右,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0即log2x3x4=0则x3x4=1;当|log2x|=1得x=2或,则1<x4<2;<x3<1;故x3(x1+x2)+=﹣2x3+,<x3<1;则函数y=﹣2x3+,在<x3<1上为减函数,则故x3=取得最大值,为y=1,当x3=1时,函数值为﹣1.即函数取值范围是(﹣1,1).故选:B.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键.7.(4分)已知f(x)为奇函数,且在(0,+∞)上是递增的,若f(﹣2)=0,则xf(x)<0的解集是() A. {x|﹣2<x<0或x>2} B. {x|x<﹣2或0<x<2} C. {x|x<﹣2或x>2} D. {x|﹣2<x<0或0<x<2}参考答案:D考点: 奇偶性与单调性的综合.专题: 函数的性质及应用.分析: 易判断f(x)在(﹣∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.解答: 解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,由f(﹣2)=0,得f(﹣2)=﹣f(2)=0,即f(2)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f(x)的草图,如图所示:由图象,得xf(x)<0?或,解得0<x<2或﹣2<x<0,∴xf(x)<0的解集为:(﹣2,0)∪(0,2),故选:D点评: 本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.8.如果则实数a的取值范围为(
)A.
B.
C.
D.参考答案:D略9.函数的定义域是(
)A.
B.
C.
D.参考答案:D略10.已知全集,集合,,则(A) (B) (C) (D)参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知角α终边落在点(1,3)上,则的值为
.参考答案:2【考点】GH:同角三角函数基本关系的运用;G9:任意角的三角函数的定义.【分析】由角α终边落在点(1,3)上,利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可求出答案.【解答】解:∵角α终边落在点(1,3)上,∴sinα=,cosα=,则=.故答案为:2.12.不等式(a2-1)x2-(a-1)x-1<0的解集是全体实数,则实数的取值范围是________参考答案:略13.如图所示,墙上挂有一块边长为a的正六边形木板,它的六个角的空白部分都是以正六边形的顶点为圆心,半径为的扇形面,某人向此板投镖一次,假设一定能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是
.参考答案:14.函数的部分图象如图,其中,,.则____;_____.参考答案:2
【分析】由图求得,再由求出,利用图象过点,求出,进而求出,即可求解,得到答案.【详解】由题意,根据三角函数的部分图象,可得即,因为,所以,又由图可知,根据,解得,因为,所以,所以.故答案为:2;【点睛】本题主要考查了由的部分图象确定其解析式,其中解答中熟记三角函数的图象与性质,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.15.若,且,则向量与的夹角为
▲
.参考答案:16.已知,,则=.参考答案:【考点】两角和与差的正弦函数;两角和与差的余弦函数.【分析】α+=(α+β)﹣(β﹣),进而通过正弦函数的两角和公式得出答案.【解答】解:已知,,,,∴,,∴===故答案为:﹣【点评】本题主要考查正弦函数两角和公式的运用.注意熟练掌握公式.17.下列命题:①偶函数的图象一定与y轴相交;②任取x>0,均有()x>()x;③在同一坐标系中,y=log2x与y=的图象关于x轴对称;④A=R,B=R,f:x→y=,则f为A到B的映射;⑤y=在(﹣∞,0)∪(0,+∞)上是减函数.其中正确的命题的序号是.参考答案:②③【考点】命题的真假判断与应用.【分析】①可举偶函数y=x﹣2,通过图象即可判断;②由幂函数y=xn,n>0时,在(0,+∞)上递增,即可判断;③通过换底公式得到y==﹣log2x,由图象对称即可判断;④考虑A中的﹣1,对照映射的定义即可判断;⑤可举反例:x1=﹣1,x2=1,则y1=﹣1,y2=1.即可判断.【解答】解:①可举偶函数y=x﹣2,则它的图象与与y轴不相交,故①错;②由幂函数y=xn,n>0时,在(0,+∞)上递增,则任取x>0,均有()x>()x,故②对;③由于y==﹣log2x,则在同一坐标系中,y=log2x与y=的图象关于x轴对称,故③对;④A=R,B=R,f:x→y=,则A中的﹣1,B中无元素对应,故f不为A到B的映射,故④错;⑤可举x1=﹣1,x2=1,则y1=﹣1,y2=1.不满足减函数的性质,故y=在(﹣∞,0)∪(0,+∞)上不是减函数故⑤错.故答案为:②③【点评】本题以命题的真假判断为载体,考查函数的奇偶性及图象,函数的单调性和应用,以及映射的概念,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(14分)已知角θ的终边经过点P(3,﹣4).(1)求sinθ,cosθ和tanθ的值;(2)求的值.参考答案:【考点】运用诱导公式化简求值.【分析】(1)由题意可得x=3,y=﹣4,r=5,根据三角函数的定义可得sinθ,cosθ和tanθ的值.(2)利用诱导公式化简所求,结合(1)结论即可计算得解.【解答】(本题满分为12分)解:(1)因为角θ的终边经过点P(3,﹣4),所以x=3,y=﹣4,所以
,…(1分)所以
,…,….…(7分)(2)因为
cos(3π﹣θ)=﹣cosθ,…(8分),…(9分),…(10分)tan(π+θ)=tanθ,…(11分)所以…(12分)=.
…(14分)【点评】本题考查任意角的三角函数的定义,两点间的距离公式,诱导公式的应用,求出x、y、r的值,是解题的突破口,属于基础题.19.(本小题满分10分)如图,AB是圆O的直径,C是半径OB的中点,
D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.(I)求证:;(II)若,试求的大小.参考答案:(1)证明:因MD与圆O相交于点T,由切割线定理,,得,设半径OB=,因BD=OB,且BC=OC=,则,,所以------------------5分(2)由(1)可知,,且,故∽,所以;根据圆周角定理得,,则
--------10分20.(本小题满分14分)已知中,顶点,边上的中线所在直线的方程是,边上高所在直线的方程是.(Ⅰ)求点、C的坐标;
(Ⅱ)求的外接圆的方程.参考答案:(1)(2)或
根据③④有.21.(本小题满分12分)
已知各项均为正数的数列{an}的前n项和为,且成等差数列.(1)求数列的通项公式;(2)若,设求数列的前项和.参考答案:解:(1)由题意知当n=1时,当两式相减得()整理得:()
………………4分∴数列{an}是为首项,2为公比的等比数列.
……5分(2)
…………6分①
②①-②得
………………9分
…………11分
……………………12分略22.某工厂有甲、乙两生产车间,其污水瞬时排放量y(单位:m3/h)关于时间t(单位:h)的关系均近似地满足函数y=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π),其图象如下:(Ⅰ)根据图象求函数解析式;(II)由于受工厂污水处理能力的影响,环保部门要求该厂两车间任意时刻的污水排放量之和不超过5m3/h,若甲车间先投产,为满足环保要求,乙车间比甲车间至少需推迟多少小时投产?参考答案:【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)由图可得A,b,利用周期公式可求ω,将t=0,y=3,代入y=sin(t+φ)+2,结合范围0<φ<π,可求φ从而可求函数解析式.(II)设乙车间至少比甲车间推迟m小时投产,据题意得cos[(t+m)]+2+cos(t)+2≤5,化简可得﹣≤cos(m)≤,由m∈(0,6),可得范围2≤m≤4,即可得解.【解答】(本题满分为12分)解:(Ⅰ)由图可得:A=(3﹣1)=1,…1分b=(3+1)=2,…2分∵=6,∴ω=,…3分∴将t=0,y=3,代入y=sin(t+φ)+2,可得:sinφ=1,又∵0<φ<π,∴φ=,…5分∴y=sin(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版信托资金借贷合同合规性审查条款3篇
- 二零二五年度古董家具修复木工合同范本4篇
- 二零二五年度智能锁定制加工合同范本4篇
- 2025版环保木工材料供应与分包工程合同4篇
- 2025版事业单位聘用合同续签与绩效考核及晋升标准协议3篇
- 2025版外教中介聘请合同标准范本3篇
- 农产品仓储库存管理与优化考核试卷
- 2025版信托投资公司外汇存款账户管理合同3篇
- 2025年加盟冰淇淋店合同模板
- 2025年加盟加盟推广合同
- 道路沥青工程施工方案
- 内陆养殖与水产品市场营销策略考核试卷
- 票据业务居间合同模板
- 承包钢板水泥库合同范本(2篇)
- DLT 572-2021 电力变压器运行规程
- 公司没缴社保劳动仲裁申请书
- 损伤力学与断裂分析
- 2024年县乡教师选调进城考试《教育学》题库及完整答案(考点梳理)
- 车借给别人免责协议书
- 应急预案评分标准表
- “网络安全课件:高校教师网络安全与信息化素养培训”
评论
0/150
提交评论