广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析_第1页
广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析_第2页
广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析_第3页
广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析_第4页
广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省茂名市高州南塘第一高级中学2022高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.为了在运行下面的程序之后得到输出y=16,键盘输入x应该是(

)A.或

B.

C.或

D.或参考答案:C2.下列函数是偶函数的是()A.y=x B.y=2x2﹣3 C. D.y=x2,x∈[0,1]参考答案:B【考点】偶函数.【专题】计算题.【分析】根据偶函数的定义“对于函数f(x)的定义域内任意一个x,都满足f(x)=f(﹣x),则函数f(x)为偶函数”进行判定.【解答】解:对于A,f(﹣x)=﹣x=﹣f(x),是奇函数对于B,定义域为R,满足f(x)=f(﹣x),是偶函数对于C,定义域为[0,+∞)不对称,则不是偶函数;对于D,定义域为[0,1]不对称,则不是偶函数故选B.【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题.3.已知双曲线(,)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(

)A.(1,2] B.(1,2) C.[2,+∞) D.(2,+∞)参考答案:C已知双曲线双曲线(,)的右焦点为,若过点且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,

,离心率,故选C【点睛】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.4.已知>O,b>0,+b=2,则的最小值是

(

)(A)

(B)4

(C)

(D)5参考答案:C5.设,,则“”是“”的(

)A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件参考答案:C不能推出,反过来,若则成立,故为必要不充分条件.6.抛物线y=x2的焦点坐标为()A.(1,0) B.(2,0) C.(0,) D.(0,)参考答案:D【考点】抛物线的简单性质.【分析】根据题意,由抛物线的方程分析可得该抛物线的焦点在y轴正半轴上,且2p=,由坐标公式计算可得答案.【解答】解:抛物线的方程为:y=x2,变形可得x2=y,其焦点在y轴正半轴上,且2p=,则其焦点坐标为(0,),故选:D.7.设集合,,则“”是“”的(

A.充分而不必要条件

B.必要而不充分条件

C.充分必要条件

D.即不充分也不必要条件参考答案:C8.已知函数,在锐角三角形ABC中,A、B、C的对边分别为a,b,c,,且△ABC的面积为3,b+c=2+,则a的值为A.10

B.

C.

D.参考答案:B9.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即

[k]={5n+k丨n∈Z},k=0,1,2,3,4。

给出如下四个结论:①2013∈[3]

②-3∈[2];

Z=[0]∪[1]∪[2]∪[3]∪[4]④“整数a,b属于同一“类”的充要条件是“a-b∈[0]”。其中正确结论的个数是(

)A.1

B.2

C.3

D.4参考答案:D10.一个圆锥的表面积为π,它的侧面展开图是圆心角为120°的扇形,则该圆锥的高为(

)A.1 B. C.2 D.2参考答案:B【考点】旋转体(圆柱、圆锥、圆台).【专题】空间位置关系与距离.【分析】设圆锥的底面半径为r,结合圆锥的表面积为π,它的侧面展开图是圆心角为120°的扇形,求出圆锥和母线,进而根据勾股定理可得圆锥的高.【解答】解:设圆锥的底面半径为r,∵它的侧面展开图是圆心角为120°的扇形,∴圆锥的母线长为3r,又∵圆锥的表面积为π,∴πr(r+3r)=π,解得:r=,l=,故圆锥的高h==,故选:B【点评】本题考查的知识点是旋转体,熟练掌握圆锥的几何特征是解答的关键.

二、填空题:本大题共7小题,每小题4分,共28分11.平面ABC,M、N分别为PC、AB的中点,使得的一个条件为_____________________________;参考答案:12.不等式的解集为________.参考答案:略13.已知则x=

。参考答案:3或714.已知点(x,y)在圆(x-2)2+y2=1上,则x2+y2-2y的最小值为

.参考答案:15.等比数列{an}的前n项和Sn=3n+t,则t+a3的值为

.参考答案:17【考点】等比数列的性质;等比数列的前n项和.【分析】由题意易得数列的前3项,可得t的方程,解t值可得答案.【解答】解:由题意可得a1=S1=3+t,a2=S2﹣S1=6,a3=S3﹣S2=18,由等比数列可得36=(3+t)?18,解得t=﹣1,∴t+a3=﹣1+18=17.故答案为17.16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设()是位于这个三角形数表中从上往下数第行、从左往右数第个数,如.则为

参考答案:59

略17.由这六个数字组成_____个没有重复数字的六位奇数.参考答案:

解析:既不能排首位,也不能排在末尾,即有,其余的有,共有三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某超市从2017年1月甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按,(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下:假设甲、乙两种酸奶独立销售且日销售量相互独立.(Ⅰ)写出频率分布直方图(甲)中的a值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为S12与S22,试比较S12与S22的大小(只需写出结论);(Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率.参考答案:【考点】CC:列举法计算基本事件数及事件发生的概率;B8:频率分布直方图.【分析】(Ⅰ)利用频率分布直方图的性质即可得出.(Ⅱ)设事件A:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件B:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件C:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.求出P(A),P(B),P(C).【解答】解:(Ⅰ)由各小矩形面积和为1,得(0.010+a+0.020+0.025+0.030)×10=1,解得a=0.015,由频率分布直方图可看出,甲的销售量比较分散,而乙较为集中,主要集中在20﹣30箱,故s12>s22.(II)设事件A:在未来的某一天里,甲种酸奶的销售量不高于20箱;事件B:在未来的某一天里,乙种酸奶的销售量不高于20箱;事件C:在未来的某一天里,甲、乙两种酸奶的销售量恰好一个高于20箱且另一个不高于20箱.则P(A)=0.20+0.10=0.3,P(B)=0.10+0.20=0.3.∴P(C)=P(A)P()+P()P(B)=0.42.∴甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率0.42.【点评】本题考查离散型随机变量的方差,频率分布直方图,独立重复试验概率的求法,考查计算能力,属于中档题.19.已知椭圆C:=1(a>b>0)中,椭圆长轴长是短轴长的倍,短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的标准方程;(2)已知动直线y=k(x+1)与椭圆C相交与A,B两点,若线段AB的中点的横坐标为﹣,求斜率k的值.参考答案:【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)利用已知条件列出方程组求解椭圆的几何量,即可得到椭圆的方程.(2)设A(x1,y1),B(x2,y2),将y=k(x+1)代入椭圆方程,整理得(1+3k2)x2+6k2x+3k2﹣5=0,利用判别式以及韦达定理,结合中点坐标,求解即可.【解答】(本题满分12分)解:(1)由已知得,所以椭圆的标准方程为.﹣﹣﹣﹣﹣﹣﹣﹣(2)设A(x1,y1),B(x2,y2),将y=k(x+1)代入椭圆方程,整理得(1+3k2)x2+6k2x+3k2﹣5=0..﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为AB中点的横坐标为,所以,解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.已知椭圆、抛物线、双曲线的离心率构成一个等比数列且它们有一个公共的焦点(4,0),其中双曲线的一条渐近线方程为y=x,求三条曲线的标准方程.参考答案:略21.某连锁经营公司所属个零售店某月的销售额和利润额资料如下表.(1)画出散点图.观察散点图,说明两个变量有怎样的相关性;(2)由最小二乘法计算得出,利润额对销售额的回归直线方程为.问当销售额为(千万元)时,估计利润额的大小.

参考答案:解:(1)销售额与利润额成线性相关关系(图3分,关系2分)

(2)因为回归直线的方程是:,,,

——8分∴y对销售额x的回归直线方程为:

∴当销售额为4(千万元)时,利润额为:=2.4(百万元)

答:利润额为2.4百万元。略22.已知函数f(x)=px﹣﹣2lnx.(Ⅰ)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数f(x)在其定义域内为增函数,求正实数p的取值范围;(Ⅲ)设函数g(x)=(e为自然对数底数),若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求实数p的取值范围.参考答案:【考点】6E:利用导数求闭区间上函数的最值;6H:利用导数研究曲线上某点切线方程.【分析】(I)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程.(II)求出函数的导函数,令导函数大于等于0恒成立,构造函数,求出二次函数的对称轴,求出二次函数的最小值,令最小值大于等于0,求出p的范围.(III)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围.【解答】解:(I)当p=2时,函数f(x)=2x﹣﹣2lnx,f(1)=2﹣2﹣2ln1=0,f′(x)=2+﹣,曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2﹣2=2.从而曲线f(x)在点(1,f(1))处的切线方程为y﹣0=2(x﹣1)即y=2x﹣2.(II)f′(x)=p+﹣=,令h(x)=px2﹣2x+p,要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立,由题意p>0,h(x)=px2﹣2x+p的图象为开口向上的抛物线,对称轴方程为x=∈(0,+∞),∴h(x)min=p﹣,只需p﹣≥0,即p≥1时,h(x)≥0,f'(x)≥0∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).(III)∵g(x)=在[1,e]上是减函数,∴x=e时,g(x)min=2;x=1时,g(x)max=2e,即g(x)∈[2,2e],当p<0时,h(x)=px2﹣2x+p,其图象为开口向下的抛物线,对称轴x=在y轴的左侧,且h(0)<0,所以f(x)在x∈[1,e]内是减函数.当p=0时,h(x)=﹣2x,因为x∈[1,e],所以h(x)<0,f′(x)=﹣<0,此时,f(x)在x∈[1,e]内是减函数.∴当p≤0时,f(x)在[1,e]上单调递减?f(x)max=f(1)=0<2,不合题意;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论